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Recoils from Neutrinos: 
past, present, future

P. S. Barbeau  & G. C. Rich for the COHERENT 
collaboration
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A Historical Perspective
• D.Z. Freedman. “Coherent effects of a weak neutral current.” Phys. Rev. D9, 

1389 (1974). 

• A. Drukier and L. Stodolsky “Principles and applications of a neutral current 
detector for neutrino physics and astronomy.” Phys. Rev. D30, 2295 (1984). 

• B. Cabrera, L. Krauss, F. Wilczek, “Bolometric Detection of Neutrinos.” Phys. 
Rev. Lett. 55, 25 (1985)
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"We propose new detectors for bolometric measurement of 
low-energy ν interactions, including coherent nuclear 
elastic scattering. A new and more sensitive search for 
oscillations of reactor antineutrinos is practical (∼100 Kg of 
Si), and would lay the groundwork for a more ambitious 
measurement of the spectrum pp, Be7 and B8 solar ν’s, 
and supernovae anywhere in our galaxy (∼10 tons of Si).” 
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CoGeNT History
• CoGeNT: Coherent Germanium Neutrino Technology 

• The original intention of these low threshold detectors was a measurement of 
the coherent neutrino scattering cross-section at the SONGs reactor.
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First Things First
• Before any deployment of this detector, we spent 3 years developing a 

facility that was capable of calibrating these detectors  

• 24 keV neutron beam at the KSU Triga Reactor 
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First Things First
• Thorough characterization of the beam with multiple detector technologies
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First Things First
• Repeated MACRO experiment with plastic scintillator
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Backing detector: 6LiI[Eu] 
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Calibration of the Detector
• The dominant uncertainty was due to multiple scattering in 450g detector
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Calibration of the Detector
• Accidental backgrounds from environmental gammas, and spurious neutron 

recoils are subtracted by measuring anti-coincident events
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Direct Calibration for CoGeNT
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CoGeNT Results
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Expected reactor ν coherent scatter 
signal

68,71Ge L-shell
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Present: the COHERENT Collaboration
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Why Measure Coherent 𝛎-Nucleus Scattering?
• CEvNS is an irreducible background for WIMP searches, and should be measured in 

order to validate background models and detector responses.
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Why Measure Coherent 𝛎-Nucleus Scattering?
• A high-𝜎, neutral current detector would 

be a clean way to search for sterile 𝛎’s 

• The development of a coherent neutrino 
scattering detection capability provides 
perhaps the best way to explore any 
sterile neutrino sector that could be 
uncovered with ongoing experiments. 

• Coherent 𝜎 proportional to Qw2. A 
precision test of 𝜎 is a sensitive test of 
new physics above the weak scale. Mtop 
and Mhiggs are known → Remaining 
theoretical uncertainties ~0.2%

A. Drukier & L. Stodolsky, PRD 30 (84) 2295

• Neutrino Magnetic Moments 

• Measuring the neutron distribution 
functions (Form Factors) 

• By measuring the relative rates on several 
nuclear targets we dramatically extend 
the sensitivity of searches for Non-
Standard 𝛎 Interactions 

• Largest 𝜎 in Supernovae dynamics. We 
should measure it to validate the models

K. Patton, et al., PRC 86, 024216

A. C. Dodd, et al., PLB 266 (91), 434

A. J. Anderson et al., PRD 86 013004 (2012) 

L. M. Krauss, PLB 269, 407

J. Barranco et al., JHEP0512:021,2005 

K. Scholberg, Phys.Rev.D73:033005,2006

J.R. Wilson, PRL 32 (74) 849



Large Mass, Low-Threshold, Low-Background Detectors

• COHERENT Collaboration’s goal is the unambiguous 
measurement of CEvNS at Spallation Neutron Source (SNS)

P-Type Point 
Contact HPGe Low-Background 

CsI(Na)
2-Phase LXe



The Spallation 
Neutron Source

• Decay-at-Rest Neutrino Source


• 𝛎 flux 4.3x107 𝛎 cm-2 s-1 at 20 m


• Pulsed: 350 ns half-width at 60 Hz
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<1% contamination from non-CEvNS scatters ~4x10^-5 background reduction



An unambiguous measurement

• Observe the pulsed ν time-structure 

• Observe the 2.2 μs characteristic decay of delayed ν’s 

• Observe the N2 cross-section behavior between targets
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Quenching Factor Measurements
• A facility has been developed at Duke/TUNL to enable the precision detector calibration using 7Li 

(p, n)7Be reaction.  

• Proton beam has 500 eV resolution. LiF target: 0.026 - 0.132  mg cm-2  

• The neutron beam is tunable (30 keV - 3 MeV), Monochromatic (~3 keV width), collimated (1.5 
cm) and pulsed (2 ns), 104 n cm-2 hr-1 with 600 nA proton current for En = 580 keV



Quenching Factor Measurements

• Early measurements have used 24 backing detectors (plus one beam 
monitor at 0 degrees) 

• Event trigger based on Coincidence between the Beam Pulse Monitor and 
backing detectors. Effort to minimize potential threshold effects.
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Neutron beam characteristics

• Neutrons and gammas are clearly separated by time of flight
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• Neutron energy 
and its resolution at 
0 degrees can be 
reliably confirmed 
using TOF 

• Beam bursts are 
well contained in 
time (~10 ns)
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Initial results with NaI(Tl)

• Events triggered by high-angle backing detector, close geometry
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Projection onto PE yield axis of neutron ROI
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Preliminary QF for Na recoils

• Extraction of lower-
energy QF complicated 
by unreliable backing 
detectors and trigger 
configuration - both 
issues are now 
corrected!
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QF facility improvements
Dedicated beam line: to be installed this summer/autumn 

Allows semi-permanent installation of scattering detectors
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QF facility improvements
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QF facility improvements

• Hundreds of PMTs available at TUNL 

• More recoil angle coverage and/or 
greater standoff distances
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QF facility improvements
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• PMT mounts are custom produced with 3D printers 
• Allows rapid redesign of facility. 
• Large θ and Φ coverage to increase solid angle, check 

systematics and test channeling



G.C. Rich, ORNL July 01 2015

QF facility improvements
• 3D-scanning capabilities developed for detailed measurements of setup 

• Simple, very-preliminary tests show decent agreement with measurements 
made by hand
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Summary

• A new collaboration has formed, combining the efforts of several groups that have been 
aiming towards a coherent neutrino-nucleus scattering measurement. 

• Background studies indicate the basement as the optimal location 

• CsI[Na] has already been delivered and installed 

• Several detectors to measure the 𝛎-induced induced neutron emission cross-sections 
on Pb, Fe and Cu installed an on their way 

• We expect each detector sub-system to reach ~ 5𝞼 significance for an excess, pulsed 
with the beam around year 2-2.5 

• This will allow us to confirm that the signal is beam related (pulsed nature), a result of 
ν’s (2.2 μs decay) and due to CEvNS (𝞼~N

2
) 

• The precision measurement of quenching factors is at the core of the 
experiment, and are absolutely necessary for the interpretation of our signals.



Extra Slides
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Calibration of the Detector
• Accidental backgrounds from environmental backgrounds, and spurious 

neutron recoils are subtracted by measuring anti-coincident events
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Calibration of the Detector
• Accidental backgrounds from environmental backgrounds, and spurious 

neutron recoils are subtracted by measuring anti-coincident events
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Backgrounds
The SNS is a facility designed to 
produce neutrons (> 100 MeV), and 
that those neutrons are pulsed with 
the same time structure of the 
neutrinos (with the exception of 
the characteristic decay time of 
the muon).


Coded aperture image of neutrons on the SNS floor
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Hunting for a Background Free Location

• Extensive background measurement 
campaign since 2013 points to the 
SNS basement as the optimal location 
( >104 reduction)
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CsI(Na) detector and shield• The detector shields use several 
tons of lead 

• Neutrons can be produced near 
the detectors. They will be 
pulsed, and share the 2.2 μs 
decay time of the ν’s 

• Need to measure this 𝞼 and 
optimize the shields

New Background: 𝛎-induced neutrons (NINs)



Measuring the 𝛎-induced neutrons

• Several palletized (mobile) targets with LS detectors delivered to the SNS 

• Will measure neutrino-induced-neutrons on Pb, Fe and Cu



Neutron beam production

• 7Li(p,n) reaction at ~0 
degrees [1] 

• LiF evaporated onto thin, 
aluminum backings 

• Thin LiF layer, ~100-500 
nm, limits proton straggling 

• High-purity Al (99.999%), 
0.25-mm thick, limits 
neutron interactions in 
backing

[1] C.L. Lee, X.-L. Zhou, Nucl. Instrum. Meth. B 152, 1-11 (1999)


