

CCD response to a ¹²⁴Sb-⁹Be source

Alvaro E Chavarria Kavli Institute for Cosmological Physics

Outline

- Photo-neutron calibration principle.
- Nuclear recoil spectrum from data.
- Expected recoil spectrum from simulation.
- Extraction of ionization efficiency.
- Systematics.
- Results.

124Sb Source

- Irradiated at NC State.
- Activity measured with HPGe on September 1st:

0.290 ± 0.010 mCi

~5 mCi when data taking started.

 $1000s n s^{-1} \longrightarrow$

Full Be

Replacing BeO parts with Al allows to measure γ background.

CCD setup

500 μm CCD. 8 Mpixel. 15 μm x 15 μm pixels. Set temperature 130 K. Substrate bias 130 V.

0

UChicago

Flex cable

Copper frame

(.

Diffusion limited

CCD Performance

⁵⁵Fe data

Tritium source

$\begin{array}{c} \textbf{Likelihod clustering} \\ N_{e}(E) \times \texttt{Gaus}(x,y,\mu_{x},\mu_{y},\sigma(z)) \\ \uparrow \\ \texttt{Number of} \\ \texttt{ionized electrons} \end{array} \qquad \begin{array}{c} \texttt{Best estimate for} \\ \texttt{mean of energy} \\ \texttt{deposition} \end{array} \qquad \begin{array}{c} \texttt{Lateral spread} \end{array}$

Use moving window and fit to a 2D Gaussian distribution. Register LL of best-fit. Compared to LL of constant pixel values. Difference between the two LL (ΔLL) allows us to select for physical events.

Selection cuts

Simulation

Simulated events with diffusion model with parameters set to data.

Events pasted on a subsample of 1000 acquired images.

10

9

8

0.8

keV

Energy /

pixel

0.9

0.

0.6

0.5

0.4

0.3

0.2

0.1

0

۲Ô

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Energy / keV

b¹ 0.7

0

0.2

0.1

0.3

0.4

0.5

20

0.8

Background spectrum (neutrons off)

Increase at low energies correlated with source intensity. Not CCD noise.

Observed spectrum

Data spectrum

Signal spectrum

For a particular run integrate number of ¹²⁴Sb decays during exposure.

MCNP gives neutron flux Full detector geometry modeled in MCNPX 5.

⁹Be(γ ,n) using latest value from Arnold et al¹.

Pb elastic scattering cross-sections from A. Robinson².

Spectrum moderated. Resonances of nearby materials (mostly Cu) evident.

> ¹PRC85 044605 ²PRC89 032801

Recoil spectrum from flux

9.1 ELASTIC ANGULAR DISTRIBUTIONS

Larson data (±3% systematic)

eV⁻¹ 12[†] Count density / 10 operation

ENDF-VI

Principle

Given an expected recoil spectrum for our setup, we need to find mapping from E_{ee} to E_r that best matches our measured spectrum.

Expected spectrum is obtained from Monte Carlo.

Integral solution

 σ obtained by adding bin uncertainties in quadrature.

 $\pm \sigma_r$ generally asymmetric.

Cross-check

For every data set we also do a cubic spline spectral fit. Fit result used to correct for detector resolution. Fitting and integral solution give same result when they should.

Source configuration

Source configuration

Use to study systematic on MCNP source modeling. Test neutron propagation with modified neutron spectrum.

³He counter test

Cadmium layer around ³He counter to stop thermals. Thickness of poly chosen as to be most sensitive to 15 - 25 keV neutrons.

³He counter test

Positio n	Measured rate / s ⁻¹	Predicted rate / s ⁻¹	Results for source in different positions 0.35 0.35 0.3
8	14.81	14.90 ± 0.83	bio.25 Left
9	4.00	4.09 ± 0.23	
10	4.01	4.11 ± 0.23	Black points
11	0.45	0.46 ± 0.03	^{0.05} 0.05 0.05 0.05 0.05 0.05 0.05 0.05
12	3.95	4.14 ± 0.23	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16	0.70	0.63 ± 0.04	Recoil energy / kev _r Result from moving the neutron
17	0.65	0.58 ± 0.03	source ± 3.4 cm consistent with ³ He

6.25% RMS ratio between measurement and simulation. Take as systematic.

Systematics summary

- Difference between FullBe and Alumina setup.
- 5.6% from source intensity.
- 6.3% in amplitude from geometry.
- 3% total rate from elastic scattering σ .

Results

Ionization efficiency for nuclear recoils in Si

In context

Conclusions

- Photo-neutron sources offer promising alternative to calibrate detectors at the lowest energies.
- Complementary results by DAMIC collaboration down to DAMIC100 threshold (60 eV_{ee}).
- Discrepancy with Lindhard model below
 5 keV_r in silicon.