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• Photo-neutron calibration principle.

• Nuclear recoil spectrum from data.

• Expected recoil spectrum from simulation.

• Extraction of ionization efficiency.

• Systematics.

• Results.
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Source
24 keV 

neutrons from 
9Be(γ,n) reaction

82

clearly demonstrates monochromatic neutrons peaking at 23.5 keV in the spectrum.

The tail in the lower energy range in the spectrum is due to neutron moderation by

BeO. The cross-section of 9Be(�, n) at 1.69 MeV is 1.64 mbar from xxxx measurement

in Figure 5.6. It shows that the e�ciency of neutron production with 135.8g of BeO

is 1.47e-4 in the simulations.

Figure 5.4: Setup geometry defined in the MCNP simulations viewed from the side.

The neutrons go through the stainless steel flange with a thinkness of 9/16” after

propagating in the lead. We use a 3He detector to measure the neutron fluxes around

the lead castle and around the CCD chamber to test the neutron propagation in

the lead and the 9Be(�, n) photonuclear cross-section in the simulations, shown in

Figure 5.7. 3He reacts by absorbing thermal neutrons, producing a 1H and a 3H ion.

Its sensitivity to � rays is negligible, and therefore providing a very useful neutron

detector. In order to moderate neutrons from BeSb to thermal neutrons, we put a

polyethylene cylinder 1-inch thick around the 3He detector. Figure 5.8 shows the flux

of neutrons before reaching polyethylene that are actually captured by 3He which

demonstrates that the detector with polyethylene is sensitive to neutrons peaked at

energy ⇠ 23 keV. We put a 6mm cadmium foil around the 3He detector to absorb

thermal neutrons in order to decrease their influences. Natural cadmium contains

12.22 % 113Cd with a cross-section of 104 barn in the thermal energy range. Historical

measurements with the 3He detector show a 10% uncertainty.

Figure 5.7 shows 17 measurement positions with the 3He detector. The spec-

Need to stop γs



• Irradiated at NC State.

• Activity measured with 
HPGe on September 1st:

4

0.290 ± 0.010 mCi

~5 mCi when data 
taking started.

89

Figure 5.13: Di↵erent source geometries, including ”Full BeO”, ”Outer BeO”, ”Inner
BeO”, ”Outer BeO Inner Al2O3”, and ”Poly”.

1000s n s-1

Replacing BeO parts with Al allows 
to measure γ background.

124Sb Source
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CCD setup

Pump Lead

Chamber
DAQ

500 μm CCD.
8 Mpixel.

15 μm x 15 μm pixels.
Set temperature 130 K.

Substrate bias 130 V.

Flex cable

Copper frame

UChicago
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Charged particles 
produce ionization 

in CCD bulk.

Charge 
collected by 
each pixel on 
CCD plane is 

read out.

3.62 eV for 
e-h pair.

~2 e- RMS read-out noise. 
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DM Motivation CCDs Particle detection Quenching DAMIC Near future Summary BACK UP
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CCD Performance

>95% of the image 
good quality.

ee
Energy measured in pixel / eV
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Distribution of pixel values in image

30 ks exposure

blank

6.7 eVee

RMS noise!

10794 images acquired over 
126 days. All good.

±6%

SNOLAB
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 / ndf 2χ  25.75 / 26

Prob   0.4767
A         0.0053± 0.1099 
      µ  0.0011± 0.5215 
   σ  0.00104± 0.02148 

c         0.0183± 0.3968 

H source on CCD3

Source region
Expected noise
Background region

Backscattered e-?

2 μm gate 
structure 21 eVee resolution 

at 525 eVee

Tritium source
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Likelihood clustering
N
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(E)⇥ Gaus(x, y, µ
x

, µ
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,�(z))

Number of 
ionized electrons

Best estimate for 
mean of energy 

deposition
Lateral spread

Use moving window and fit 
to a 2D Gaussian 

distribution. Register LL of 
best-fit. Compared to LL of 

constant pixel values. 
Difference between the two 
LL (ΔLL) allows us to select 

for physical events.



60 eV
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0.01 events per 
image from noise

Selection cuts
 / ndf 2χ  152.2 / 58

Prob   2.175e-10

p0        1.284e+06± 1.144e+08 

p1        0.002± 1.318 
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Simulation

Simulation
Simulated events with 
diffusion model with 

parameters set to data.

Events pasted on a subsample 
of 1000 acquired images.
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Background spectrum
(neutrons off)

K edge

L edge

Backscattered e-?

Increase at low energies correlated with source intensity.
Not CCD noise.
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Observed spectrum

Normalized 
to count rate 

2-5 keVee.

Uncertainty 
propagated in 

analysis.
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For a particular run integrate number of 
124Sb decays during exposure.

Signal spectrum
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MCNP gives neutron flux
Full detector geometry modeled in MCNPX 5. 
9Be(γ,n) using latest value from  Arnold et al1.

Pb elastic scattering cross-sections from A. Robinson2.

1PRC85  044605
2PRC89 032801
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9. ANGULAR DISTRIBUTIONS 

9.1 ELASTIC ANGULAR DISTRIBUTIONS 

There is a large amount of neutron elastic scattering data from 40 keV to 15 MeV. Below 40 
keV, the angular distribution is assumed to be isotropic, which was observed by Lane et al. (LA61, 
LA62). 

From 40 keV to 800 keV, the distributions were taken from a R-function analysis of the data 
of Kinney and McConnell (KI76). The angular distribution data of Kinney and McConnell (thinned) 
were used between 800 keV and 3 MeV. The data at 3.1 MeV are from Popov (P061) and those at 
3.5 MeVare from TanT& (TA64). As noted in Section 3.2, from 4 to 9 MeV, angular distributions 
measured at nearby energies were averaged, resulting in a set of seven distributions at 4.25,4.8,5.25, 
5.8,6.6,7.75, and 8.75 MeV. The average distributions were obtained by fitting a Legendre series 
to each data set and averaging the coefficients to obtain the results used in the evaluation. The data 
sets which make up each averaged group are given in Table 5. The data at 9.8 MeV are from the work 
of Obst and Weil (OB73), and at 10.95 MeV from Nellis and Buchanan (NEi72). From 11 to 20 MeV, 
the results of the optical model calculations from GENOA (PE67) are used to provide the 
recommended data set. 

' 

9.2 INELASTIC ANGULAR DISTRIBUTIONS 

For the discrete levels 1.779, 4.617, 6.276, 6.879, and 6.8899 MeV of =Si, the angular 
distributions in ENDFB-VI are a weighted sum of Legendre coefficients from the TNG and direct 
interaction (DWUCK) calculations. The angular distributions for all other levels of =Si, *'Si, and 30Si 
were taken from the TNG analyses. The calculated differential (n,n') cross sections for exciting 
selected low-lying discrete levels are compared with measurements in Figs- 38 through 49. The need 
for nuclear model analyses and better data can be seen from these figures for in many cases the 
measurements disagree with each other. 

9.3 ANGULAR DISTRIBUTIONS OF NEUTRON-PRODUCTION CROSS SECTIONS 

The computed angular distributions of neutron production cross sections �or silicon at an 
incident energy of 14.5 MeV and for secondary energies of E: = 2.0-3.0,4.0-5.0,6.0-7.0, and 7.0-8.0 
MeV are compared with experiments in Fig. 50. Again, discrepancies exist among the measured data 
sets. The results for E: = 7.0-8.0 MeV correspond to levels in the discrete region and include the sum 
of TNG and DWUCK calculations. For E',, = 6.0-7.0 MeV, the results are also in the discrete region 
but are symmetric since there was no direct interaction contribution included and TNG computes the 
angular distributions for only the compound component of the discrete levels. The computed results 
lie below the data for the low outgoing energies and will be discussed further in the section on neutron 
emission below. 
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ENDF-VI

Larson data (±3% systematic)
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Given an expected 
recoil spectrum for 
our setup, we need 

to find mapping 
from Eee to Er that 
best matches our 

measured spectrum.

Expected spectrum is 
obtained from Monte Carlo.
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Eee

Integral down 
to Eee = N ± σ Integrals up to 

N-σ, N, N+σ

Er +σr-σr

σ obtained by adding bin 
uncertainties in quadrature. ±σr generally asymmetric.

Simulated

Integral solution
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 / ndf 2χ  132.9 / 151

Prob   0.8524
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Cubic spline fit to FullBe data set

Cross-check

For every data set we also do a cubic spline spectral fit.
Fit result used to correct for detector resolution.

Fitting and integral solution give same result when they should. 
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89

Figure 5.13: Di↵erent source geometries, including ”Full BeO”, ”Outer BeO”, ”Inner
BeO”, ”Outer BeO Inner Al2O3”, and ”Poly”.

Source configuration
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Figure 5.13: Di↵erent source geometries, including ”Full BeO”, ”Outer BeO”, ”Inner
BeO”, ”Outer BeO Inner Al2O3”, and ”Poly”.
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Figure 5.13: Di↵erent source geometries, including ”Full BeO”, ”Outer BeO”, ”Inner
BeO”, ”Outer BeO Inner Al2O3”, and ”Poly”.
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Results from different source configurations

Source configuration
Use to study systematic on MCNP source modeling.

Test neutron propagation with modified neutron 
spectrum.
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FullBe/InnerBe and 

InnerAl/InnerAlumina.

For today take 
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84

Figure 5.7: Setup of the 3He detector. a) Viewed from above where circles show
measurement locations. b)3He detector with polyethylene wrapped around.
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Figure 5.8: Flux of neutrons before reaching polyethylene that are actually captured
by 3He which demonstrates that the detector with polyethylene is sensitive to neutrons
peaked at energy ⇠ 23 keV.

3He counter test

Cadmium layer around 3He counter to stop thermals.
Thickness of poly chosen as to be most sensitive to 

15 - 25 keV neutrons.



3He counter test
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Results for source in different positions

Positio
n

Measured 
rate / s-1

Predicted 
rate / s-1

8 14.81 14.90 ± 0.83

9 4.00 4.09 ± 0.23

10 4.01 4.11 ± 0.23

11 0.45 0.46 ± 0.03

12 3.95 4.14 ± 0.23

16 0.70 0.63 ± 0.04

17 0.65 0.58 ± 0.03

6.25% RMS ratio between measurement and 
simulation. Take as systematic.

Result from moving the neutron 
source ±3.4 cm consistent with 3He.

Black points 
include 6.25% 

systematic
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Systematics summary
• Difference between FullBe and Alumina setup.

• 5.6% from source intensity.

• 6.3% in amplitude from geometry.

• 3% total rate from elastic scattering σ.

Other effects 
found negligible, 
e.g. resolution

±15 eVr

extremes
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Results

740±120 eVr at 60 eVee
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In context

Covered entire DAMIC 
WIMP search ROI



• Photo-neutron sources offer promising 
alternative to calibrate detectors at the 
lowest energies.

• Complementary results by DAMIC 
collaboration down to DAMIC100 threshold 
(60 eVee).

• Discrepancy with Lindhard model below      
5 keVr in silicon.
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Conclusions


