Light and Charge Yield of Low-Energy Electronic Recoils in Liquid Xenon

Luke Walker Goetzke Columbia University

LOWECAL Workshop University of Chicago September 23, 2015

Energy Scale: Ly and Qy of LXe

Current Status

- Few measurements of light and charge yield of LXe
- Very few measurements of field dependence

ER relative light yield (Ly)

Luke W. Goetzke

LOWECAL, University of Chicago – September 23, 2015

Largest systematic uncertainty in:

Aprile *et al.*, Phys. Rev. D 90, 062009 (2014) Aprile et al., Phys. Rev. Lett. 115, 091302 (2015) Aprile et al., Science Vol. 349, No. 6250, 851 (2015)

ER charge yield (Qy)

neriX detector

nuclear and electronic recoils in Xenon

- 2-phase LXe TPC
- Charge and light from nuclear and electronic recoils down to ~1keV
- Adjustable electric field: ~200–2250 V/cm
- Completed ER measurements

Luke W. Goetzke

- ERs measured using "Compton coincidence technique"
- γ ray Compton scatters in neriX, depositing $E_r = E_{\gamma} E_{\gamma}$
- HPGe far detector measures energy of outgoing γ ray with good resolution (1 σ =0.6keV @ 662keV)

Rooney and Valentine, IEEE Trans. Nucl. Sci., 43, 1271 (1996)

$$-\frac{E_{\gamma}}{1+\frac{E_{\gamma}}{m_{e}}(1-\cos\theta)}$$
with anoth resolution (1 σ =0.6keV (6)

- Trigger on coincidence of HPGe and $S2 \rightarrow$ raw (prompt) HPGe signal, S2 width trigger
- Require *S1* in coincidence in offline processing

Rooney and Valentine, IEEE Trans. Nucl. Sci., 43, 1271 (1996)

- 2-phase \rightarrow charge and light yield
- 3D event vertex reconstruction
- PTFE support structure \rightarrow maximize light detection efficiency
- Easily re-configurable with stackable pieces
- Reduced amount of materials in vicinity of sensitive volume \rightarrow minimize systematics

- 2-phase \rightarrow charge and light yield
- 3D event vertex reconstruction
- PTFE support structure \rightarrow maximize light detection efficiency
- Easily re-configurable with stackable pieces
- Reduced amount of materials in vicinity of sensitive volume \rightarrow minimize systematics

Design Considerations

- 2-phase \rightarrow charge and light yield
- 3D event vertex reconstruction
- PTFE support structure \rightarrow maximize light detection efficiency
- Easily re-configurable with stackable pieces
- Reduced amount of materials in vicinity of sensitive volume \rightarrow minimize systematics

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Design Details

1.947

Luke W. Goetzke

Design Details

.947 _

Luke W. Goetzke

QE @175nm

>35%

- Top PMTs (4): R8520-406-M4 SEL
- Bottom PMT: R6041-406 SEL

16 channels

- Hexagonal mesh, etched from SS foil @Rice University
- ~3mm pitch
- 125um thickness (anode, gate, cathode)
- 25um thickness (bottom)

Grid	Voltage [kV]
anode	+4.5
gate	0 (gnd)
cathode	-0.35, -1.05, -2.36, -5.50
bottom	0 (gnd)

Anode/cathode overlay

Design Details

+++ **COLUMBIA UNIVERSITY** IN THE CITY OF NEW YORK

Cryogenic and Purification System

Same system as used for:

Aprile *et al.*, Phys. Rev. D 86, 112004 (2012) Plante *et al.*, Phys. Rev. C 84, 045805 (2011)

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

- Level set using spill-over (weir method)
- Level adjusted with motion feedthrough
- Custom capacitive level meters (2)
- Accurate to ±33µm

Total LXe mass: ~2.2kg Active volume mass: ~100g Spill-over

Level meter

Buffer volume

165cm³

Design Details

Motion feedthrough

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

_		Cathode [kV]
	2D and 3D COMSOL SIM	-0.35
•	Verify drift field and extraction efficiency	-1.054
٠		-2.356
	Field variation 6-8%	-5.500

Luke W. Goetzke

+++ **COLUMBIA UNIVERSITY** IN THE CITY OF NEW YORK

- Light collection efficiency simulation using GEANT4
- Tune grid reflectivity to match observed depth dependence of S1

= LCE \cdot QE \cdot internal collection $= 0.42 \cdot 0.37 \cdot 0.75$

Good matching of depth dependence

Luke W. Goetzke

Uniform light collection of bottom PMT

Position Reconstruction

Luke W. Goetzke

Luke W. Goetzke

Directly measure:

Single electron gain

Aprile *et al.*, J. Phys. G 41, 035201 (2014)

Luke W. Goetzke

LOWECAL, University of Chicago – September 23, 2015

Electron extraction efficiency

Regular HPGe calibrations

Specs: Ortec GEM Series Coaxial HPGe Detector, Model GEM40-76, CFG-SL-76, DWR-30B P-type, 40% efficiency, 76mm endcap

Luke W. Goetzke

	Details		5
•	4 drift fields: 210, 490, 1000, 2250 V/cm		4
•	2 angles: 0 and 25 degrees 0-45keV 30-130keV ~30-100k events/setting	E, [keV]	3 2 1
•	Total measuring time ~50-150 hrs/setting		25
			20
	Infer E ₂ from:	unts	15
	661.7 keV – HPGe energy	Ō Ċ	10
•	Light yield $(E_r) = S1(E_r)/E_r$		5
	Charge yield (E_r) = S2(E_r)/ E_r		

Low-E Results

Light yield

- Measured very low recoil energies with good precision
- Yields vary significantly with recoil energy and field
- Anti-correlation observed
- Yields from different baseline in agreement

Charge yield

Low-E Results

Absolute light yield = light yield/g1

- Detector-independent property
- Useful for comparison with other results and in simulation

Absolute charge yield = charge yield/g2

+++ **COLUMBIA UNIVERSITY** IN THE CITY OF NEW YORK

NEST Comparison

neriX ER Compton data

Luke W. Goetzke

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Recombination

Luke W. Goetzke

NEST/LUX Comparison

LUX Tritiated-Methane data (TAUP2015)

PIXeY ²²Na data (LINDINE2015)

Absolute Light Yield [photons keV⁻¹]

LOWECAL, University of Chicago – September 23, 2015

NEST v0.98

Szydagis et al., JINST 6, P1002 (2011)

Effects Under Consideration

- PMT gains \rightarrow direct measurement
- HPGe energy resolution \rightarrow direct measurement
- Incomplete collection and field non-uniformity near TPC walls \rightarrow direct measurement
- Energy loss in insensitive areas \rightarrow MC, direct measurement
- S1 peak-finding efficiency \rightarrow improved method
- Effect of differential rate variation across bin \rightarrow MC
- Photon collection efficiency (geometrical limit) \rightarrow MC Not yet incorporated

NR Measurement

- D-D generator
- EJ301 liquid scintillators as secondary detectors \rightarrow PSD

Same generator as used for:

Plante et al., Phys. Rev. C 84, 045805 (2011)

Initial measurements underway!

Luke W. Goetzke

LOWECAL, University of Chicago – September 23, 2015

Larger housing *Tested up to 100kV*

