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Energy Scale: Ly and Qy of LXe

• Few measurements of light and charge yield of LXe

• Very few measurements of field dependence

ER charge yield (Qy)ER relative light yield (Ly)

Current Status

Aprile et al., Phys. Rev. D 86, 112004 (2012)
Baudis et al., Phys. Rev. D 87, 115015 (2013)

Aprile et al., Phys. Rev. D 90, 062009 (2014)
Aprile et al., Phys. Rev. Lett. 115, 091302 (2015)

Aprile et al., Science Vol. 349, No. 6250, 851 (2015)

Largest systematic uncertainty in:
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neriX detector
nuclear and electronic recoils in Xenon

• 2-phase LXe TPC

• Charge and light from nuclear and electronic 
recoils down to ~1keV

• Adjustable electric field: ~200–2250 V/cm 

• Completed ER measurements
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Measurement Method

• ERs measured using “Compton coincidence technique"

•  γ ray Compton scatters in neriX, depositing 

• HPGe far detector measures energy of outgoing γ ray with good resolution (1=0.6keV @ 662keV)

Rooney and Valentine, IEEE Trans. Nucl. Sci., 43, 1271 (1996)
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Aprile et al., Phys. Rev. D 86, 112004 (2012)
Baudis et al., Phys. Rev. D 87, 115015 (2013)

Similar technique as used in:
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• Trigger on coincidence of HPGe and S2 → raw (prompt) HPGe signal, S2 width trigger

•  Require S1 in coincidence in offline processing

Rooney and Valentine, IEEE Trans. Nucl. Sci., 43, 1271 (1996)

Measurement Method

Aprile et al., Phys. Rev. D 86, 112004 (2012)
Baudis et al., Phys. Rev. D 87, 115015 (2013)

Similar technique as used in:
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Design Considerations

• 2-phase → charge and light yield      

• 3D event vertex reconstruction

• PTFE support structure → maximize light 
detection efficiency

• Easily re-configurable with stackable pieces

• Reduced amount of materials in vicinity of 
sensitive volume → minimize systematics

5
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Design Details
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Design Details
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Design Details

• Top PMTs (4): R8520-406-M4 SEL 

• Bottom PMT: R6041-406 SEL
QE @175nm

 >35%

16 channels

9
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Design Details

• Hexagonal mesh, etched from SS foil @Rice University 

• ~3mm pitch

• 125um thickness (anode, gate, cathode)

• 25um thickness (bottom)

Anode/cathode overlay

Grid Voltage [kV]

anode +4.5

gate 0 (gnd)

cathode -0.35, -1.05, -2.36, -5.50

bottom 0 (gnd)
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Cryogenic and Purification System

Aprile et al., Phys. Rev. D 86, 112004 (2012)
Plante et al., Phys. Rev. C 84, 045805 (2011)Same system as used for:

Total LXe mass: ~2.2kg
Active volume mass: ~100g
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Design Details

• Level set using spill-over (weir method)

• Level adjusted with motion feedthrough

• Custom capacitive level meters (2)

• Accurate to ±33m

Level meter

Buffer volume
165cm3

Spill-over

LXe 
return

Motion feedthrough

Total LXe mass: ~2.2kg
Active volume mass: ~100g

12



Luke W. Goetzke                                          LOWECAL, University of Chicago  –  September 23, 2015                                                               /28      

Electric Field Simulation

• 2D and 3D COMSOL sim

• Verify drift field and extraction efficiency 

• Field variation 6-8%

• Define fiducial volume

~1 kV/cm field

FV

Cathode [kV] Field [kV/cm]

-0.35 0.21

-1.054 0.49

-2.356 1.01
-5.500 2.25

PMTs at (-) HV

13
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• Light collection efficiency simulation using GEANT4

• Tune grid reflectivity to match observed depth 
dependence of S1 

Good matching of depth dependence

Uniform light collection of bottom PMT

Simulated Measured

Light Collection Simulation

FV

Absolute photon gain: 
g1 = (11.5 ± 0.5)%

±10% variation

= LCE ·  QE  · internal collection
= 0.42 · 0.37 · 0.75

Effect corrected in final data

14
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• Reconstruction in x-y using 2 network 

Position Reconstruction

Grid points resolved 
(1.7 mm)

CCT data @ ~1 kV/cm field

• Directly measure electron drift velocity

Photoionization from grids:
(S2sTot[1]/S2sTot[0])<0.02 

15
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• PMT gain using blue LED, UV fiber

• Detector response to 137Cs and 57Co

mpe response

57Co

Average PMT gain: 
~6x105 electrons/pe 

137Cs
490 V/cm 490 V/cm

Regular calibrations

spe response

Calibration

Typical S1 light yield, with field

@122keV: ~3-6 pe/keV

@662keV: ~2-3 pe/keV

Track 662keV yield during coincidence 
measurements using accidental peak

5Ci and 120Ci

/E 
~ 17%

16
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Directly measure:

100% extraction 
efficiency at 4.5kV

Aprile et al., J. Phys. G 41, 035201 (2014)

Single electrons in XENON100:

 Single electron gain  Electron extraction efficiency

Absolute charge gain:
g2 = ~15-17 pe/electron

Calibration

Top+bottom PMTs Bottom PMT only

17
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Regular HPGe calibrations

22Na 
511 keV

137Cs 
662 keV

2-point energy calibration

Energy resolution (±1) for 0 keV recoils during CCT measurements: 
0.6 keV

HPGe calibration

Specs: Ortec GEM Series Coaxial HPGe Detector, Model GEM40-76, CFG-SL-76, DWR-30B
            P-type, 40% efficiency, 76mm endcap

18
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Infer Er from: 
661.7 keV – HPGe energy

Details

0 degrees
490 V/cm
14-15 keV

• 4 drift fields: 210, 490, 1000, 2250 V/cm 

• 2 angles: 0 and 25 degrees

• ~30-100k events/setting

• Total measuring time ~50-150 hrs/setting

• Light yield (Er) = S1(Er)/Er

• Charge yield (Er) = S2(Er)/Er

Measurement

0-45keV 30-130keV

19
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Light yield

Low-E Results

Charge yield

• Measured very low recoil energies with good precision

• Yields vary significantly with recoil energy and field

• Anti-correlation observed

• Yields from different baseline in agreement

Measurement

20
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Absolute light yield = light yield/g1 Absolute charge yield = charge yield/g2

• Detector-independent property

• Useful for comparison with other results and in simulation

Measurement
Low-E Results

21
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NEST Comparison

Szydagis et al., JINST 6, P1002 (2011)

NEST v0.98
NEST fields: 200, 500, 1000, 2000 V/cm

Absolute light yield = light yield/g1 Absolute charge yield = charge yield/g2

22
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NEST/LUX Comparison
neriX ER Compton data LUX Tritiated-Methane data (TAUP2015)

Szydagis et al., JINST 6, 
P1002 (2011)

NEST v0.98

23
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Recombination

Assume Er/W = S1/g1 + S2/g2

W = 13.7 ± 0.9 eV (taken from NEST paper)

Use W and data to fit for g1

Compute Er using derived g1

PR
EL
IMI
NA
RY

PR
EL
IMI
NA
RY

Close to g1 from simulation

24
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NEST/LUX Comparison

LUX Tritiated-Methane data (TAUP2015)

Szydagis et al., JINST 6, 
P1002 (2011)

NEST v0.98

Assuming 
g1 ~ 0.1

25

neriX ER Compton data

NB: fields not the same
210±15 vs 180±?
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NEST/PIXeY Comparison

PIXeY 22Na data (LINDINE2015)

Assuming 
g1 ~ 0.1

Szydagis et al., JINST 6, 
P1002 (2011)

NEST v0.98

26

neriX ER Compton data
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Effects Under Consideration

• PMT gains → direct measurement

• HPGe energy resolution → direct measurement

• Incomplete collection and field non-uniformity near TPC walls → direct measurement

• Energy loss in insensitive areas → MC, direct measurement

• S1 peak-finding efficiency → improved method

• Effect of differential rate variation across bin → MC

• Photon collection efficiency (geometrical limit) → MC

Systematics

Not yet incorporated

Underestimate yields

Overestimate yields

27
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NR Measurement

• D-D generator

• EJ301 liquid scintillators as secondary detectors → PSD

Next Steps

Initial measurements underway!

Plante et al., Phys. Rev. C 84, 045805 (2011)Same generator as used for:

Larger housing
Tested up to 100kV
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