

Neutron Calibration Sources In The Daya Bay Experiment

Gaosong Li Shanghai Jiao Tong University

LOWECAL workshop, Sep 23-25, 2015 KICP, University of Chicago

Outline

- Introduction
 - Daya Bay
 - Common neutron sources
 - Why ²⁴¹Am-¹³C as neutron source
- ²⁴¹Am-¹³C
 - Design
 - Fabrication
 - Performance

Based on the work http://arxiv.org/abs/1504.07911, to be published in NIM A

J. Liu, R. Carr, D.A. Dwyer, W.Q. Gu, G.S. Li, R.D.

McKeown, X. Qian, R.H.M. Tsang, F.F. Wu, C. Zhang

 Calibration source induced neutron background at Daya Bay

Daya Bay

Inverse Beta Decay (IBD)

- Daya Bay is making a \bar{v}_e + precision measurement for neutrino mixing angle θ_{13}
- Detector target is Gd loaded liquid scintillator
- Daya Bay measures antineutrino via IBD
- Prompt + delayed coincidence provides distinctive event signature

~ 8 MeV multiple gammas

Prompt positron signal

Calibration System

- Precision measurement requires detector to be very well calibrated with various sources regularly
- Automated calibration units (ACUs)
 - Allow weekly calibration of detector response
 - Sources stay on top of detector during regular data taking

Potential Background

- Neutrons hardly leak into the detector, but n cap on SS (Fe, Mn, Cr, Ni) \rightarrow high energy γ (6-10MeV) can travel into the detector
 - 1 Hz neutron source → 2e-3 Hz single neutron-like (>6MeV) signal in the detector
- Accidental background formed when another singles and such a neutron-like signal happens closely in time (<200us)
 - Less a issue since statistically subtractable with high precision
- Correlated background formed when both prompt and delayed from the same neutron
 - Multiple neutrons emitted
 - $-\gamma$, n correlated emission
 - Neutron inelastic scattering before capture

Source Requirement

- Physics requirement
 - Accidental background at far site: B/S < 5%
 - Given 70Hz singles rate and 70/AD/day IBD at far site
 - Require neutron rate < ~1Hz → LOW RATE
 - Correlated background at far site: B/S < 0.5%
 (<0.35/AD/day) → GAMMA-LESS
- We need a low rate gamma-less neutron source

Source Considerations

- Fission source ²⁵²Cf
 - 3.7 neutrons/fission → corr. bkg. (2.6/AD/day @ 0.5Hz neutron)
- Photo-neutron source such as ¹²⁴Sb-Be
 - Small photo-neutron cross section, need strong driving gamma source → high corr. bkg.
- (α, n) source
 - ${}^{241}Am {}^{9}Be$
 - $-^{241}Am^{-7}Li$
 - ²⁴¹Am-¹³C

AmBe

- Typical (α, n) sources suffer from correlated γ, n emission
- Correlated γ , n emission \rightarrow corr. bkg. (1.3/AD/day @ 0.5Hz neutron)
- Too much correlated background!

AmLi

- No correlated γ below 5.5 MeV \odot
- But cross section cut off at 4.4 MeV → low n yield ⊗
- No suitable stable Li salt 😕
 - LiF: large corr. γ , n emission from ^{19}F
 - LiCl: hydroscopic

AmC

- Small corr. γ , n emission
- Ground states only for E_{α} <5.11 MeV!
 - Attenuate α below
 5.11 MeV to
 remove ¹⁶O excited
 states
- AmC is a good candidate

¹⁶O excited state threshold

Alpha Source

- One-sided α from NRD Inc. with specs
 - 5 mm disk
 - 4.5 MeV
 - 28 uCi
- Customized energy by varying the thickness of electrodeposited gold coating

Alpha Measurement Setup

 A 0.75-inch in diameter Si detector measured NRD source at different distances in a vacuum chamber (<10mTorr)

Alpha Spectrum

- All sources are consistent in spectrum and rate, measured rate is slightly lower than 28 uCi
- Though peaked at 4.6 MeV, board distribution extends up to 5.5 MeV, need extra attenuation
- Little spectrum shape dependence on distance to detector, indicating the gold plated surface is rough

Further Attenuation

- Attach 1 um gold foil to alpha source
- Peak shifted by 0.5 MeV
- No events above 5.11 MeV out of 20000

Mechanical Design

- Am, gold foil, C are sandwiched
- Ensure uniform and compact contact between alpha and C13
- Protect from alpha leakage, weld-on 3 cement

Fabrication

Simulation and Flux Prediction

 Use GEANT4 to track alpha in Au foil and ¹³C until it stops, calculate weight for each step in ¹³C and summed together

weight_i =
$$\sigma(E_{\alpha,i}) \times d_i$$

 $R_n = R_{\alpha} \times \sum_i \text{weight}_i \times \frac{\rho_{^{13}C} \mathcal{N}_{\mathcal{A}}}{13}$

- Energy calculated by generating n at random direction w.r.t. alpha momentum using
 2-body elastic kinematics
- Neutrons heading upwards have higher energy

(b) Energy-angle correlation

Installed In ACU

Neutron source

bottom weight

ACU

Performance at Daya Bay

Neutron proton recoil energy peaked at ~1 MeV, scintillator quenching effect.

(a) Prompt energy spectrum

(b) Delayed energy spectrum

Very good data/MC agreement for all distributions!

Measured rate (0.75Hz) meets the design spec.

 ${\bf (c)}\ {\it Prompt-delay\ time\ separation}$

Residual Background

- Neutron background is important for DM experiment
- Kind of "similar" with DM experiment
 - Tiny background, can't be measured, can only calculated indirectly
 - "Man-made" v.s. "Environmental"

Single Neutrons Observed in Detector

Z-distribution of single nlike events in physics data

Single n-like events spectrum near the top of the ADs at the far site

Correlated Background

- Measure single neutron like (n-like) rate R_{single} from data
- Predict correlated rate R_{corr} using

$$R_{corr} = Yield \cdot R_{single}$$

- Ratio of R_{corr} over R_{single} based on MC, constrained by benchmark measurement
 - A special "strong" AmC source was constructed to directly observe the correlated events

Strong Neutron Source Fabrication and Installation

Benchmark Experiment

"Strong" AmC

A ~60Hz ²⁴¹Am-¹³C source (80 times stronger than regular ones) with the same design deployed during summer 2012

Single Neutron Spectrum from Strong AmC: Data vs MC

Strong AmC's Prompt Spectrum: Data vs MC

Background And Systematics

"Measured" ACU Single Neutron Rate

- Assigned 30% rate uncertainty from singles neutron rate variation
- Another 30% uncertainty for Yield based on benchmark experiment

15% Shape uncertainty.

Far site corr. bkg. requirement satisfied

~0.2+-0.1 /AD/day

Summary

- A low rate & gamma-less neutron source was designed and fabricated for the Daya Bay experiment.
- Such source could be utilized in other experiments with low background requirement.

Backup

Measurement

4 Nal detectors (15*15*30cm)

• 3 muon paddles to reduce muon induced

background

• More details in

Simulated Neutrons

Neutron Capture Target

Capture mainly on Fe, Cr, Ni, Mn

ACU enclosing structure and AD SS structures

