Response and discrimination of Low-Energy Electronic and Nuclear Recoils in Liquid Xenon

Qing Lin

Physics Department, Columbia University

•LOWECAL 2015, Chicago

What to measure in LXe

Detector (LXe-TPC)

TPC Diameter[mm]	57
maximum drift length[mm]	10
Cathode-Screen[mm]	21
Anode-Gate[mm]	5
Sensitive Volume [g]	77
Fiducial Volume[g]	3
Top PMT number/Type	4/R8520
Bottom PMT number/Type	1/R11410

•2

Detector performance

Signal model in LXe

$$S1 = a \cdot N_{ph} = a(\frac{N_{ex}}{N_i} + r)N_i$$
$$S2 = b \cdot N_e = b(1 - r)N_i$$

N_i -- number of ion-electron pairs a -- photon detection efficiency (PDE)

b -- electron amplification factor(EAF)

r -- recombination fraction

Recombination model

$$\frac{\partial N_{+}}{\partial t} = -\mu_{+}\mathbf{E}\cdot\nabla N_{+} + d_{+}\nabla^{2}N_{+} - \alpha N_{+}N_{-} \text{ ION}$$

$$\frac{\partial N_{-}}{\partial t} = \mu_{-}\mathbf{E}\cdot\nabla N_{-} + d_{-}\nabla^{2}N_{-} - \alpha N_{+}N_{-} \text{ ELECTRON}$$

$$\frac{\partial N_{-}}{\partial t} = \mu_{-}\mathbf{E}\cdot\nabla N_{-} + d_{-}\nabla^{2}N_{-} - \alpha N_{+}N_{-} \text{ ELECTRON}$$

$$\text{First-Doke Law (High-energy case, Drift and diffusion process neglected):}$$

$$r = \frac{A \cdot (dE/dx)}{1+B \cdot (dE/dx)} + C$$

A and B proportional to α , A/B+C=1

Thomas-Imel Box (TIB) model (Low-energy case, drift of electron taken into account) :

$$r = 1 - \frac{1}{\xi} \ln(1 + \xi), \xi = \frac{\alpha N_i}{4a_0^2 \mu E}$$

From NEST (JINST 6, P10002)

Birl

Detector operation

Cross check of PDE and EAF using Anti-correlation

The 3.0% and 2.6% varation of the PDE and EAF (CA), respectively, between anti-correlation and 1kV/cm data are within the 4% uncertainty of NEST.

Measured recoils

NR matches with NEST prediction. ERs don't.

Update TIB parameters

Edge effect

Discrimination observed in previous experiments

	$\operatorname{Field}[\mathrm{kV/cm}]$	PDE[%]	energy ROI	Gamma rejection power[%]	Nuclear recoil accepance[%]
ZEPLIN-II[14]	1.00	1.7	5-20 keVee	98.5	50
XENON10[9]	0.73	9.3	$4.5-26.9\mathrm{keVnr}$	99.86	$45 \sim 49$
ZEPLIN-III[10]	3.90	8.1	$7-35\mathrm{keVnr}$	~ 99.99	~ 40
XENON100[7]	0.53	6.7	$6.6-43.3\mathrm{keVnr}$	99.75	$20 \sim 60$
LUX[8]	0.18	14.0	$3.4-25.0\mathrm{keVnr}$	99.6	50
PandaX	0.67	9.6	$4 - 10 \mathrm{keVnr}$	99.6	50

Review of signal fluctuation

Discrimination measurement

Probability of ER to appear below NR mean

No observation of discrimination level increasing as field!

Discrimination measurment

 $\Delta \alpha$ for High energy $\Delta Q/Q$

Low energy $\Delta \alpha$

•16

Low energy $\Delta \alpha$

Expected Leakage fraction with the model

Expected Leakage fraction with the model

Summary

- 1. Response of low energy NR and ER in LXe at different fields (236V/cm 3.93kV/cm) were measured. NR data are consistent with NEST, while ER showed a deviation of photon yield by 5ph/keVee from NEST (Q. Lin et al., Phys. Rev. D 92, 032005, 2015).
- 2. An average ER rejection around 99.99% (with 50% NR acceptance) was achieved at different fields.
- 3. Preliminary study shows the ER rejection doesn't depend significantly on the field, while $\Delta \alpha / \alpha$ follows a log-linear dependence with field in our measurement.

Thank you!

Backup

Float also N_{ex}/N_i

Compare to existing measurements

Need more measurements of low energy ER to confirm

energy spectrum dependence of signal response

3-D simulation result (with liquid level2mm below gate mesh)

• Footer Text

2015-9-23 •