# A <sup>220</sup>Rn source for internal calibration of next-generation low-background detectors

Darryl Masson, Purdue University

dmasson@purdue.edu

September 25, 2015. LOWECAL 2015

XEN

**Dark Matter Project** 



### NR/ER band calibration

- Nuclear and electronic recoil discrimination necessary to pick signals out of backgrounds
- Need good statistics



Darryl Masson, dmasson@purdue.edu

# Out with the old...

• External gamma sources no longer probe the entire fiducial volume of larger detectors



### ... In with the new

Internal  $\beta^-$  source provides an equivalent spectrum to Compton scatters from an external source

#### **Requirements:**

- Get it in
  - Noble element
  - Hitchhike on contaminant
- Do something useful
  - $\beta$  decays to ground state
- Get it out
  - Decay
  - Purification

### Which one, which one?

| Isotope                                | Q-value [keV] | % to GS | Half-life | Advantages                           | Disadvantages                          |
|----------------------------------------|---------------|---------|-----------|--------------------------------------|----------------------------------------|
| <sup>37</sup> Ar (ec)                  | 814           | 100     | 35 d      | 2 keV X-ray, Auger e-                | Line source                            |
| <sup>83m</sup> Kr (IT)                 | 41.6          | -       | 1.83 hr   | Decays away, 32.2 & 9.4 keV $\gamma$ | Line source                            |
|                                        |               |         |           |                                      |                                        |
| <sup>3</sup> H                         | 18.6          | 100     | 12.3 yr   | Every decay useful                   | Long half-life                         |
| $^{14}$ C                              | 156           | 100     | 5700 yr   |                                      | Very long half-life                    |
|                                        |               |         |           |                                      |                                        |
| <sup>39</sup> Ar                       | 565           | 100     | 269 yr    |                                      | Large Q, long half-life                |
| <sup>85</sup> Kr                       | 687           | >99     | 10.7 yr   |                                      | Large Q, long half-life                |
| <sup>212</sup> Pb ( <sup>220</sup> Rn) | 560           | 12      | 10.66 hr  | Decays away, decays from daughters   | Large Q, low BR, decays from daughters |

### <sup>228</sup>Th chain

Whole chain after <sup>220</sup>Rn dominated by half-life of <sup>212</sup>Pb (10.66 hr); introduced activity decays in a week



### <sup>228</sup>Th Source

- Electroplated Th(NO<sub>3</sub>)<sub>4</sub> onto a 30mm SS disk.
- ~70 kBq when produced at PTB





Darryl Masson, dmasson@purdue.edu

## Emanation test: TÜV, Germany

- Nitrogen recirculation for 96 hours through a filter
- Filter paper tested for gamma activity with Ge counter immediately after exposure and again a week later
- Emanation limits:
- $^{228}Th < 19 \text{ s}^{-1}$ (< 0.22  $\mu Bq/s$ )
- ${}^{224}Ra < 0.4 \ s^{-1}$ (< 0.88 µBq/s)











### Si PIN Diode



#### Ceramic filter

- Exposure 93 hours, diode immediately after source
- $^{224}$ Ra release < 0.2 hr  $^{-1}$  (< 0.12 nBq/s)



### Sintered filter



### In Summary

- <sup>212</sup>Pb works for ER band calibration
- <sup>220</sup>Rn mixes readily with noble gas stream
- < 12 hour half-life means it goes away in a week, assuming you filter out the long-lived parent isotopes

# Backup

### <sup>212</sup>Pb $\beta$ spectrum

- Events < 20 keV of interest (~1% of total)
- All events contribute to trigger rate, DAQ saturation possible

