Photoneutron Source Carachterization and Neutron Simulations

Alan Robinson

Sept 24, 2015 Low Energy Calibration Workshop

THE UNIVERSITY OF CHICAGO

Photoneutron Sources

- Portable
- Monochromatic
- Low-energy
- 10⁵ 10⁶
 photons/neutron

FIG. 5. Simulated response of a small LXe detector to an 88 Y/Be source (nuclear recoil energies in keV_{nr}, electron recoil energies from gamma component in keV_{ee}). A very similar spectral response to low-mass WIMPs like those of present interest is shown, normalized to an arbitrary cross section.

Slide 2/18 LowECal Sept 24, 2015

Photoneutron Sources

Radioisotope / beryllium sources

Source	Half-life	Photons	Neutron Energy
²²⁶ Ra	1600 y	1764 keV (15.3 %) 2204 keV (4.92 %) others (9.69 %)	89 keV 479 keV
¹²⁴ Sb	60.2 d	1691 keV (47.6 %) 2091 keV (5.49 %) others (0.52 %)	23.5 keV 379 keV
⁸⁸ Y	106.6 d	1836 keV (99.9 %) 2734 keV (0.71 %)	152 keV 950 keV
²⁰⁷ Bi	31.6 y	1770 keV (6.87 %)	94 keV

Slide 3/18 LowECal Sept 24, 2015

Photoneutron Calibrations

Need

- Well defined energy spectrum
- Absolute recoil rate
- Measure source yield
- Minimize moderator
- Understand neutron recoil response.

Photoneutron History

• The NIST calibrated neutron source is a 1 Ci ²²⁶Ra/Be photoneutron source.

Photoneutron

Sources and

Simulations

Slide 5/18 LowECal Sept 24, 2015

FIG. 1. Radium Beryllium Photoneutron Source NBS-I.

Photoneutron History

- Measurements of ${}^{9}Be(\gamma,n)$ cross-section
 - ► 1940-60's & 1982: Radioisotopes.
 - 1960-70's: Bremstrallung photons, charged particle scattering.
 - ► 2000 & 2012: Inverse compton photons.

A selection of existing measurements

⁹Be(γ ,n) Cross-section

- Reanalyzed radioisotope measurements and corrected for
 - Branching ratios
 - Detector efficiencies (using modern MCNP simulations)

• Fitted to Breit-Wigner resonance parameters.

 $E_n = 1738.8 \; \text{keV}, \; \Gamma_n = 268.7 \; \text{keV}, \; \Gamma_\gamma = 0.7715 \; \text{eV}$

Slide 8/18 LowECal Sept 24, 2015

⁹Be(γ,n) Cross-section

Source Yield

- Calculated from known cross-sections
 - ► 0.659 mb at 1836 keV
 - 1.397 mb at 1691 keV
 - 955 mb at 1770 keV
- Directly measured using He-3

Slide 10/18 LowECal Sept 24, 2015

- Photoneutron emission from ⁹Be radioisotope sources is isotropic in the rest frame.
 - Energy-angle dependence in the lab frame.

 $> \pm 6\%$ spread in Sb/Be neutron energy.

- Photoneutron yield and energy spectrum depend on the source geometry.
 - Diminishing returns on yield of unmoderated neutrons for Be or BeO thickness >1cm.

Slide 11/18 LowECal Sept 24, 2015

LowECal Sept 24, 2015

Energy degradation in BeO may be subdominant to other moderators.

Neutron Energy Spectrum from an Sb/Be Source

Slide 13/18

LowECal

• If using a lead shield

Surround the source with lead on all sides so that lead is a diffuser instead of a reflector.

Neutron Moderation

• Libraries for both MCNP and Geant4 incorrectly describe the angular distribution from neutron scattering for most isotopes.

Photoneutron

Sources and

Simulations

- Problem not applicable to oxygen and lighter.
- New libraries for F, Si, Ar, Cr, Fe, and Pb are available. PRC 89 032801 (2014).

Neutron Moderation

Figure 3. Simulated neutron energy spectra from an ${}^{88}Y/Be$ Slide 16/18surrounded by 20 cm of lead as used in the ongoing XCDLowECalexperiment at Fermilab (see text).Sept 24, 2015

Neutron Recoils

Figure 2. Simulated nuclear recoil distributions from 97 keV neutrons on C_3F_8 in the PICO-0.1 bubble chamber calibration experiment. The calibration of the detector's bubble nucleation efficiency depends critically on the number of recoils at the endpoint of the simulated nuclear recoil distribution. A factor of 2 discrepancy is found between the R-matrix calculation used in this library release and ENDF/B-VII.

Slide 17/18 LowECal Sept 24, 2015

Neutron Recoils

- Recoil spectrum uncertainties
 - Cross-section uncertainty
 - Resonance parameter uncertainty
 - Unresolved resonances

Extra slides

Neutron Elastic Scattering

- Resonances from compound states
- Continuum from potential scattering

Breit-Wigner Resonances

 Interference handled by R-matrix formalism

Slide 21/18 LowECal Sept 24, 2015

Recalculating $d\sigma/d\Omega$

• Dipole term of scattering angle distribution vs. energy

Slide 22/18 LowECal Sept 24, 2015