Calibration and Modeling of Nuclear and Electron Recoils in Liquid Argon

Workshop on Calibration of Low Energy Particle Detectors

> Samuele Sangiorgio Rare Event Detection Group. LLNL

Chicago, Sep 24, 2015

LLNL-PRES-677393

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

LLNL's Noble Liquid R&D Program

Physics Motivations

- Dark Matter
- Coherent Elastic Neutrino-Nucleus Scattering

Liquid Xenon and Argon Detectors

- Two small dual-phase detectors
- Measure electron and nuclear recoils < few keV
- Understand and control low-energy backgrounds
- HV stability in noble liquids

Dedicate low-energy neutron beam

- On-site at LLNL
- Quasi-monoenergetic filtered neutron beam

LLNL Dual-Phase LAr Detector

- Active volume: ~ 100 g Lar
- TPB as wavelength shifter
- Home-built HV feed-throughs
- Very good LAr purity

High Gain Detection of Ionization Signal

- Interest in the lowest energy possible
- Emphasis on detection of ionization by means of S2 only
- Operate close to electron multiplication in gas

Lawrence Livermore National Laboratory LLNL-PRES-677393

Ar-37 as a Diffuse Low-E Calibration Source

Decay scheme

100% electron capture

t_{1/2} = 35.04 d

Decay radiation

K- capture 2.82 keV (90.2%)

L- capture 0.27 keV (8.9%)

M- capture 0.02 keV (0.9%)

Isotope production

Produced by neutron irradiation of ^{nat}Ar at a nuclear reactor

Fig. 1. Calculated activity of radioargon isotopes from 1 h, in-core neutron irradiation of 1 cm³ of natural argon gas.

Aalseth, C. E. et al. NIM A652, 58–61 (2011).

Barsanov, V. I. et al. Phys. Atomic Nucl 70 (2007).

Sub-keV Calibration for Electron Recoils

S. Sangiorgio

Single Electrons

³⁷Ar Electron Recoils vs Electric Field

- Electric field reduces recombination of electron with ions
- Measurements of the 0.27 keV peak vs E field are ongoing
 - Need to deal with low-energy background

Recombination in LAr

Consider electron recoils first

$$S2 \propto n_e = rN_i$$

 $N_i + N_{ex} = \frac{E}{W} \cdot q(E)$

Thomas-Imel parameterization of recombination

$$r = \ln(1+\xi)/\xi$$

Introduce phenomenological scaling for field dependence:

$$\xi = CN_{\rm i} \cdot \mathcal{E}^{-b}$$

Extract field dependence parameter C, b from fit

Cfr. Sorensen, P. and Dahl, C. E., Phys. Rev. D. 83 (2011)

For electron recoils the amount of initial ionization N_i is calculable:

- $N_{ex} / N_i = 0.21$
- E = 2.82 keV for 37Ar K-shell
- W = 19.5 eV
- q(E) = 1

Modeling recombination in Liquid Argon

At low energy, empirical Thomas-Imel box model seems successful but

- Empirical field dependence
- All electron-ion pairs recombine for zero electric field
- Little insight on physical processes involved

Simulation Approach

1. Initial interaction

- Simulate initial emission of photoelectrons and/or auger electrons
- 2. Follow electrons using electron transport algorithm
 - based on prior work by Wojcik et al for thermal electrons
 - Solves equation of motion for electrons under external fields and ions field

S. Sangiorgio

- Positions and velocity of electrons are forward propagated
- 3. Compute interactions as electrons slow down
 - electrons-induced excitation, ionization and elastic scattering
 - secondary electron generated and followed as well
 - Thermal model validated against measurements (drift velocity, escape probability,...)

4. Recombination criteria:

- Electron energy < 1 eV
- Electron-ion distance < 1.3 nm

No tunable parameter!

LLNL-PRES-677393

M. Foxe, C. Hagmann, et al, NIM A 771 (2015)

Modeling ³⁷Ar Decays

rence Livermore National Laboratory S. Sangiorgio PRES-677393

Neutron-induced Nuclear Recoils in LAr

- Elastic neutron scattering
- Two complementary approaches:

SCENE

SCintillation (and ionization) Efficiency Noble Elements

- Recoils from tagged neutron scatter
- Energy 11 57 keV → DarkMatter
- Scintillation & Ionization

- End-point measurement
- Low energy < 10 keV \rightarrow CENNS
- Ionization signal only

Neutron

T. Joshi, S. Sangiorgio, et al, NIM B 333 (2014)

Creating a low-E neutron beam

The Li target

Neutron Filtering

T. Joshi, S. Sangiorgio, et al, NIM B 333 (2014) P. Barbeau et al, NIM A (2007)

Lawrence Livermore National Laboratory

Expected Recoil Spectrum in LAr

MCNP calculation of neutron transport and interaction using detailed geometry

Endpoint Measurement

$$T_{\rm Ar}^{\rm MAX} = \frac{4mM}{(m+M)^2} E_n$$

Endpoint measurement at 6.7 keV nuclear recoils

LLNL's on-site dedicated neutron beam

Ionization Yield at 6.7 keVr

Fit using the MCNP spectrum convolved with measured detector resolution and three free parameters: $Q_y = 4.9^{+0.1}_{-0.2} (\text{stat})^{+0.7}_{-0.9} (\text{syst}) e^{-}/\text{keV}$

at 640V/cm

- fixed ionization yield,
- rate normalization,
- fano factor

Uncertainty Estimation

Component	Statistical	(%) Systematic (%)
Single electron peak	2–10	10
Single electron calibration	2	10
χ^2 analysis	3–5	•••
Input spectrum	•••	5
Background subtraction		1–3
Slope of Q_y in model 240 V/cr	n	$^{+5}_{-25}$
" 640 V/cr	n	$^{+2}_{-18}$
" 1600 V/cr	n	$^{+0}_{-19}$
" 2130 V/cr	n	$+0 \\ -21$
Liquid argon purity		5
Drift field (\mathcal{E})	•••	6

T. Joshi, S. Sangiorgio, et al, PRL 112 (2014)

Electric Field Dependence of Ionization Yield

LLNL-PRES-677393

Field Dependence

For nuclear recoils the amount of initial ionization N_i is unknown:

- $N_{ex} / N_i = ??$
- E = 6.7 keV
- W = 19.5 eV
- q(E) = ??

Same phenomenological model of recombination holds in both cases \checkmark Similarities in spatial distributions of ions and electrons

Comparison with SCENE Measurements

- Different energies and electric field range. Very complementary but hard to cross-check directly
- Agreement on recombination: same fit result for the electric field parameter 'b' in the modified Thomas-Imel (b = 0.61)
- Combined ionization yield data:

Modeling Low-E Nuclear Recoils in Liquid Argon

Modeling Results

Conclusions and outlook

- Demonstrated use of ³⁷Ar to calibrate down to sub-keV energies
- Measured the ionization yield at 6.7 keVr in liquid argon as a function of electric field
- Developed atomic collision simulation for low-energy (< 10 keV) interactions in liquid argon
 - Appreciably good agreement
 - Would be interesting to extend it to xenon

• Nuclear recoil measurements:

- Refurbishment of Li target for higher neutron efficiency
- Access lower recoil energy using different filters
- Xe target

• Things to consider:

- Liquid Argon vs Liquid Xenon
- Few-electrons backgrounds
- Single electron calibration

	Lawrence	Livermore	National	Laborator
	LLNL-PRES-67	7393		

Neutron energy			Max recoil energy (keV)		
	(keV)	Xe	Ar	Ge	
	17	0.5	1.6	0.9	
	24	0.7	2.3	1.3	
	47	1.4	4.5	2.5	
	59	1.8	5.7	3.2	
	70	2.1	6.7	3.8	
	82	2.5	7.9	4.4	

- A. Bernstein, C. Hagmann, K. Kazkaz,
 V. Mozin, S. Pereverzev, F. Rebassoo,
 S. Sangiorgio
- T. Joshi
- P. Sorensen
- I. Jovanovic
- M. Foxe

