Measurement of Ultra-low Energy Nuclear Recoils in the LUX Detector Using a D-D Neutron Generator

James Verbus Brown University

2015 LOWECAL Chicago, IL

September 23rd, 2015

Postdoc position available

- Postdoc position available in Brown Particle Astrophysics Group
- If interested, please contact group leader Richard Gaitskell
 - <u>Richard_Gaitskell@brown.edu</u>

LUX in the 8m Diameter Water Tank

Conservative Nuclear Recoil Light and Charge Yields Assumed for LUX 2014 PRL

- Modeled Using Noble Element Simulation Technique (NEST)
 - Szydagis et al., arxiv:1106.1613
- NEST based on canon of existing experimental data.
- Artificial cutoff in light and charge yields assumed below 3 keVnr, to be conservative.
- Includes predicted electric field quenching of light signal, to 77-82% of the zero field light yield
- Conservative threshold used in LUX 2014 PRL Dark Matter Result arXiv:1310.8214v2

James Verbus - Brown University

By the way, LUX has in situ calibration from 190 eV x-ray

- Using x-rays from
 ¹²⁷Xe electron capture
- Events unambiguously tagged by coincident 203 keV gamma
- Provides in situ
 measurement of ER
 ionization yield to
 energies as low as
 <u>190 eV</u>

http://pa.brown.edu/talks_files/2015_dqhuang_TAUP.pdf

Neutron Conduit Installed in the LUX Water Tank

James Verbus - Brown University

Adelphi Technology, Inc. DD108 Neutron Generator Installed Outside LUX Water Tank

- Neutron generator/beam pipe assembly aligned 17 cm below liquid level in LUX active region to maximize usable single / double scatters
- Beam leveled to ~I degree
- 107 live hours of neutron tube data used for analysis

James Verbus - Brown University

Beam Projection in Active Region

- The shine from neutron scatters in passive detector materials is visible.
- Historically, NR calibrations have significant systematics associated with neutrons scattering in passive material.
 - We can fiducialize away from such backgrounds!

James Verbus - Brown University

Neutron Beam Energy Purity

- After application of 15 cm depth-into-LXe beam purity cut
- This cut eliminates shine from passive materials and ensures 95% of neutrons in beam sample have energy within 4% of 2.45 MeV.
- Cut based on simulation, but we are showing REAL DATA

James Verbus - Brown University

Observed Ionization Signal

- Event Selection Cuts
 - Event Identification
 - Select double scatters
 - Determine vertex ordering via scattering geometry only
 - Neutron Beam Energy Purity
 - Enforced via position of scatters along beam line / depth into active LXe
 - After geometry cut, 95% of neutrons have energy within 4% of 2.45 MeV
 - Data Quality
 - Ensure quiet detector conditions
 - Ensure properly reconstructed events
- Cuts are flat for S2[1,] (first scatter along beam direction) in energy region of interest

Grey Points - Individual double scatter events

Double Scatter (S1, 2xS2s > 50 phe)

What does a 1 keV $_{nra}$ double scatter look like?

S1 and 2x S2 summed across all channels

- Reconstruct number of electrons at interaction site by matching ionization signal model with observed event distribution using extended maximum-likelihood
- Red systematic error bar shows common scaling factor uncertainty. Dominated by uncertainty in electron extraction efficiency
- Lowest event energy included for analysis is 0.3 keV_{nra}

Grey Points - Individual double scatter events

Magenta Crosses - Error bars for individual event from best 10% from each bin

Blue Crosses - Reconstructed number of electrons at interaction site accounting for threshold, resolution, and Eddington bias effects in signal analysis

Black Dashed Line - Szydagis et al. (NEST v1.0) Predicted Ionization Signal at 180 V/cm

James Verbus - Brown University

Ionization Signal Absolutely Measured below 1 keV_{nra} in LUX

14

Threshold Cut-Off Double Scatter (S1, 2xS2s > 33 phe) Sys. uncertainty $(\pm 1\sigma)$ 10^{2} Sys. uncertainty (flat) [onization Signal [electrons] **Reconstructed Number of Electrons with** Associated Statistical Uncertainty Example Error Bars for Individual Events Preliminary Sys. uncertainty due to pos. rec. energy bias correction 10° 10^{0} 10^{1} Energy Measured from Scattering Angle $[keV_{nra}]$

LUX 2014 PRL Conservative

- Reconstruct number of electrons at interaction site by matching ionization signal model with observed event distribution using extended maximum-likelihood
- Red systematic error bar shows common scaling factor uncertainty. Dominated by uncertainty in electron extraction efficiency
- Lowest event energy included for analysis is 0.3 keV_{nra}

Grey Points - Individual double scatter events

Magenta Crosses - Error bars for individual event from best 10% from each bin

Blue Crosses - Reconstructed number of electrons at interaction site accounting for threshold, resolution, and Eddington bias effects in signal analysis

Black Dashed Line - Szydagis et al. (NEST v1.0) Predicted Ionization Signal at 180 V/cm

Ionization Yield Absolutely Measured below 1 $\,keV_{nra}$ in LUX

- Red error bars show systematic uncertainties
 - $(I\sigma)$ bar dominated by uncertainty in electron extraction efficiency
 - (flat) bar accounts for detector parameter uncertainties
 - Pos. Rec. bias correction error bars compensate for modest Eddington bias due to pos. rec. uncertainties
- Updated analyses in upcoming LUX Run03 papers have revised g1 and g2 values using data driven S1 vs. S2 anti-correlation
 - Provides strong determination of absolute normalization of yields
 - Shifts measured Qy lower by ~10%

Blue Crosses - LUX Measured Qy; 180 V/cm (absolute energy scale)

Green Crosses - Manzur 2010; 1 kV/cm (absolute energy scale)

Orange Crosses - Manzur 2010; 4 kV/cm (absolute energy scale)

Purple Band - Z3 Horn Combined FSR/SSR; 3.6 kV/cm (energy scale from best fit MC)

Teal Lines - Sorensen IDM 2010; 0.73 kV/cm (energy scale from best fit MC)

Black Dashed Line - Szydagis et al. (NEST v1.0) Predicted Ionization Yield at 180 V/cm

LUX 2014 PRL Conservative Threshold Cut-Off

James Verbus - Brown University

Example: SI_c Spectrum from 400-500 S2_{sc}

- Use absolutely calibrated S2 yield to set energy scale for extraction of Ly from D-D neutron single scatter event population
- Measure number of SI photons produced at interaction site for fixed slice in S2_{sc} (absolutely calibrated by LUX D-D Q_y)
- For each fixed S2_{sc} bin, determine L_y via unbinned maximum likelihood optimization comparing simulated reconstructed S1 spectra to data
 - Both absolute number of events and spectrum shape incorporated into optimization

James Verbus - Brown University

L_{eff} Measured in LUX Using Absolute Energy Scale

- LUX L_y values reported at 180 V/cm
- X error bars representative of error on mean of population in bin
- Energy scale defined using LUX measured Qy
- Method can be extended below existing 1.2 keV_{nrS2} point
- ^{32m}Kr light yield at 32.1 keV measured to be 45.7 ± 3.13 photons/keV using same D-D beam fiducial

Blue Crosses - LUX Measured L_y; reported at 180 V/cm (absolute energy scale)

Green Crosses - Manzur 2010; 0 V/cm (absolute energy scale)

Purple Band - Horn Combined Zeplin III FSR/ SSR; 3.6 kV/cm, rescaled to 0 V/cm (energy scale from best fit MC)

Orange Crosses - Plante 2011; 0 V/cm (absolute energy scale)

Grey Crosses - Aprile 2009 (absolute energy scale)

Black Dashed Line - Szydagis et al. (NEST v1.0) Predicted Scintillation Yield at 181 V/cm

LUX 2014 PRL Conservative Threshold Cut-Off

James Verbus - Brown University

Summary of LUX D-D results

- LUX absolute nuclear recoil calibration performed using mono-energetic D-D neutrons in-situ
 - Clear confirmation of the response used in the first LUX WIMP search analysis with an order of magnitude improvement in calibration uncertainties
 - The 2014 PRL WIMP analysis only assumed a detector response at and above 3 keVnr
 - D-D neutron calibration technique allows us to calibrate detector response in region well below this, and provides a significant improvement in LUX sensitivity to low mass WIMPs using existing 2014 PRL WIMP search dataset
- Coming soon
 - LUX paper on D-D results
 - NEST fit to D-D light and charge yields
 - Updated WIMP search limit from reanalysis of 2014 PRL dataset
- But that isn't all...

We're pursuing several strategies to extend the in situ D-D NR calibration even lower in energy with smaller uncertainties for the general calibration of TPCs.

- I. Reduction of D-D neutron bunch width time structure
- 2. Creation of a mono-energetic 272 keV neutron source
- 3. Direct, absolute measurement of L_y using neutron scattering kinematics

Reduction of D-D neutron bunch width time structure

- DD beam-on time functions as a proxy for the t₀ even in the absence of an SI
 - Removes dependence upon SI production/detection for S2 only double scatter Q_y measurement
- For reference, without an SI we can fiducialize in Z (given 1.5 mm/us) with a precision:
 - 100 us (current generator spec) neutron pulse => 15 cm Z fiducialization precision
 - 10 us neutron pulse =>1.5 cm Z fiducialization precision
 - Z fiduciallization precision equal to that from x, y reconstruction (and < diameter of neutron tube)
 - I us neutron pulse => 0.15 cm Z fiducialization precision
 - Z fiduciallization precision equal to standard (I SI, I S2) technique (and << diameter of neutron tube)

James Verbus - Brown University

Reduction of D-D neutron bunch width time structure: SI photon statistics

- Can identify small S2 events from D-D scatters and look at the statistics of the associated S1 signal. For given S2 size, can measure *0*, 1, 2, ... photon events
- In addition to advanced no-S1 studies, narrow trigger pulse allows for powerful reduction and understanding of calibration backgrounds

Reduction of D-D neutron bunch width time structure: SI photon statistics

- Can identify small S2 events from D-D scatters and look at the statistics of the associated S1 signal. For given S2 size, can measure *0*, 1, 2, ... photon events
- In addition to advanced no-S1 studies, narrow trigger pulse allows for powerful reduction and understanding of calibration backgrounds

Creation of a collimated, mono-energetic 272 keV neutron source

- D-D generator source out of line with the neutron conduit to suppress direct 2.45 MeV neutrons
- 700 bar D₂ gas cylinder in-line with the neutron conduit to function as a D-D neutron reflector

 Small solid angle presented by 5 cm diameter neutron conduit ensures only neutrons that backscatter at near 180° (272 keV) are incident upon the large LXe TPC

Creation of a collimated, mono-energetic 272 keV neutron source

- Neutron beam energy purity
 - For 700 bar D₂ target, 94% of reflected neutrons are within +/-10% of central peak value of 272 keV
- Observed event rate
 - Useful reflected flux incident on the detector is 1/375x the flux of a direct line of sight D-D source with same intensity
 - Expect to achieve useful event rates enhanced above (7.5x) standard line-of-sight 2.45 MeV D-D calibrations in the range I-4 keV_{nr}
 - Increase in neutron generator flux, differential spectrum enhancement, and no inelastic losses for 272 keV neutrons

- The same 13[°] scatter waveform shown earlier, identified in existing D-D data, would be a 110 eV nuclear recoil using 272 keV incident neutrons
 - Can study Q_y in lowest ever regime where expectation for signal is ~1-2 ionization electrons!

James Verbus - Brown University

Direct, absolute measurement of L_y using neutron scattering kinematics

- But 272 keV neutrons are also 3x slower than direct 2.45 MeV D-D neutrons...
- Double scatter events with 30 cm vertex separation => 42 ns ToF for 272 keV neutrons between vertices
 - We expect an experiment could observe 100s of such events given reasonable calibration runtimes (weeks) in a large LXe TPC
 - If able to achieve even longer path lengths (>50 cm), then >70 ns separation between vertices is possible
- Can distinguish photons in SI_A from those in SI_B
- As in current Q_y measurement, can use angle to absolutely reconstruct the deposited energy for vertex A
 - Can now use direct angle based energy measurement for L_y determination using SI_A photon count

Postdoc position available

- Postdoc position available in Brown Particle Astrophysics Group
- If interested, please contact group leader Richard Gaitskell
 - <u>Richard_Gaitskell@brown.edu</u>

Additional Slides

Consider D₂O for D-D neutron backscatter target

- Alternate D-loaded backscatter target: heavy water
- For heavy water, 56% of reflected neutrons are within +/-10% of central peak value of 272 keV

The LUX Dark Matter Detector

- What is LUX?
 - a particle detector
 - a monolithic wallless fiducial region within 370 kg, two-phase Xe TPC
 - viewed by I22 Photomultiplier Tubes
 - able to reconstruct (x,y,z) for each event
 - exceptional self-shielding from outer xenon layer
 - discrimination between electronic and nuclear recoils (99.6%)
- How would LUX see dark matter?
 - it detects scintillation photons and ionized electrons created by particle interactions
 - if dark matter interacted with a xenon atom, energy transferred to that atom would be visible to LUX
 - g1 ~ O(0.10) and g2 ~ O(10) are the amplification factors for each quanta
 - n_{γ} and n_e are the fundamental measured quantities

LUX has extremely low background

1492 m underground

- 4850 ft (1492 m) underground in the black hills of South Dakota (4300 meters water equiv.) ... reduces muon flux to <1 muon per day
- surrounded by a 7.6 m diameter water shield ... reduces gamma and neutron backgrounds to
 I projected event in 300 days of searching
- limiting factor is detector construction materials ... this limit is <2 background events per DAY in the central 118 kg target in the energy window of interest... and is decreasing

James Verbus - Brown University

Measuring the Scintillation Yield

- Use single scatters with suitable selection criteria
- MC using measured LUX D-D charge yield to simulate expected single scatter energy spectrum with LUX threshold, purity, electron extraction, energy resolution effects applied
- Simulation uses JENDL-4.0 angular scattering crosssections with isotope selection determined based upon natural abundance and total elastic cross-sections
- L_y measurement range is 0-900 phe S2_{sc} using bins of 100 phe
 - Simulation event distribution is normalized outside of L_y measurement range using 900 < S2_{sc} < 1500 phe

Single Scatter (S1, 1xS2s > 50 phe)

Measuring the Scintillation Yield

- Use single scatters with suitable selection criteria
- MC using measured LUX D-D charge yield to simulate expected single scatter energy spectrum with LUX threshold, purity, electron extraction, energy resolution effects applied
- Simulation uses JENDL-4.0 angular scattering crosssections with isotope selection determined based upon natural abundance and total elastic cross-sections
- L_y measurement range is 0-900 phe S2_{sc} using bins of 100 phe
 - Simulation event distribution is normalized outside of L_y measurement range using 900 < S2_{sc} < 1500 phe

Measuring the Scintillation Yield

- Use single scatters with suitable selection criteria
- MC using measured LUX D-D charge yield to simulate expected single scatter energy spectrum with LUX threshold, purity, electron extraction, energy resolution effects applied
- Simulation uses JENDL-4.0 angular scattering crosssections with isotope selection determined based upon natural abundance and total elastic cross-sections
- L_y measurement range is 0-900 phe S2_{sc} using bins of 100 phe
 - Simulation event distribution is normalized outside of L_y measurement range using 900 < S2_{sc} < 1500 phe

James Verbus - Brown University

Electron Recoil Qy Comparison with Tritium^[3] and NEST^{[1][2]}

¹²⁷Xe work by Dongqing Huang (Brown University): <u>http://pa.brown.edu/</u> <u>talks_files/</u> <u>2015_dqhuang_TAUP.pdf</u>

[1] Matthew Szydagis, Adalyn Fyhrie, Daniel Thorngren, and Mani Tripathi. Enhancement of NEST Capabilities for Simulating Low-Energy Recoils in Liquid Xenon. JINST, 8:C10003, 2013. doi: 10.1088/1748-0221/8/10/ C10003.

[2] Brian Lenardo, Kareem Kazkaz, Aaron Manalaysay, Matthew Szydagis, Mani Tripathi. A Global Analysis of Light and Charge Yields in Liquid Xenon. arXiv: 1412.4417 [astro-ph.IM]

[3] Attila Dobi. Measurement of ER Fluctuations in Liquid Xenon with the LUX Detector Using a Tritium Calibration Source. LIDINE 2015

Low Mass WIMPs - Fully Excluded by LUX

Spin-Independent Sensitivity

Projected LUX 300 day WIMP Search Run

- LUX 300 day run is underway
 - Extending sensitivity by another factor 5
 - Even though LUX sees no WIMP-like events in the current run, it is still quite possible to discover a signal when extending the reach
 - LUX does not exclude LUX
- WIMPs remain our favored quarry
- LZ 20x increase in target mass

