

Xenon Detectors Response to Low Energy Recoils for Dark Matter Searches

Acknowledgment

DOE Funding:DE-FG02_10ER46709

NSF Funding:OIA-14342421

The State of South Dakota

Lu Wang, Wenzhao Wei, and Dongming Mei The University of South Dakota Workshop Calibration of Low Energy Particle Detectors, Chicago, IL Sep 23-25, 2015

Outline

Energy response to low energy recoils

- Absolute calibration
- Comparison of relative and absolute calibration
- Reconstruct recoil energy using absolute calibration
- Impact of energy resolution on discrimination of nuclear recoils from electronic recoils
- Fano factor for electronic recoils and nuclear recoils
- Discrimination of nuclear recoils and electronic recoils based on Fano factor

Question in the Relative Calibration

Relative Calibration:

Electronic Recoils: $E_{eff} = \alpha E_R$ $\alpha = 1$ Nuclear Recoils: $E_{eff} = L_{eff} \times E_R$ $L_{eff} = \frac{\#N_{pe}^{NR}/E_{NR}}{\#N_{pe}^{ER}/E_{ER}}$ $L_{eff} = \eta \times \mu$ η : Lindhard quenching μ :Hitachi quenching

This assumes the detector response to electronic recoils is linear below energy 10 or 122 keV, which is not true from a measurement by L. Baudis et al, Phys.Rev.D87:115015,2013

ER: Relative Scintillation Efficiency

be described by Birks' Law: α_r R_e $1 + kB_{2}$ α_r and kB_r can be determined using the experimental data shown in the

plot.

This behavior can

NR: Energy Response Function

- Lindhard quenching: $E_{eff} = E_R \times \eta$, $\eta = \frac{kg(E_R)}{1+kg(E_R)}$
- Birks' Law: $E_{vis} = E_{eff} \times v$, $v = \frac{\alpha}{1+kB\frac{dE_{eff}}{dv}}$

Determine α and *kB*

Data points are from L. Baudis et al, Phys.Rev.D87:115015,2013

W_i as a Function of Energy

NR Relative Scintillation Efficiency in Comparison with Absolute Efficiency

$$\frac{E_{vis}}{E_R} = L_{eff} \qquad \qquad \frac{E_{vis}}{E_R} = \frac{\alpha}{1 + kB \frac{dE_{eff}}{dx}} \times \eta$$

- Lindhard quenching predicts scintillation efficiency decreases as energy decreasing.
- At low energies, scintillation efficiency increases as energy decreasing.

NR Absolute Scintillation Efficiency Comparison

Normalize the data to absolute energy scale, the agreement between the data and our model is reasonable.

NR Energy Reconstruction

• Relative calibration:

$$E_{NR} = \frac{\# N_{pe}^{nr}}{L_{eff} \# N_{pe}^{er} / E_{ER}}$$

If
$$\#N_{pe}^{nr} = 3$$
, $\#N_{pe}^{er}/E_{ER} = 8.8/keV$, $E_{NR} = 3keV$

• Absolute calibration:

$$E_{NR} = \frac{E_g}{\eta v} \left(\frac{S_1}{\varepsilon_1} + \frac{S_2}{M_f \varepsilon_{ext}} \right)$$

If $\#N_{pe}^{nr} = 3, S_2 = 50, \varepsilon_1 = 0.14, M_f = 24.55, \varepsilon_{ext} = 0.65, E_{NR} = 6.8 \text{keV}$

- ε_1 : the product of photon detection efficiency and photoelectron quantum efficiency
- ε_{ext} : electron extraction efficiency
- M_f : photon multiplication factor

Energy Resolution and Fano factor

http://xenon.astro.columbia.edu/talks/Aprile_WON DER_2010.pdf

$$\sigma_{stat} = \sqrt{W_i(E)F(E)E}$$

T.Papp et al, Wiley Science, DOI:10.1002/xrs.754

 Different sources of fluctuation in the signal chain contributing to the overall energy resolution

Energy dependence of
resolution:
$$\frac{\sigma(E)}{E} = \frac{c_1}{E} + c_2$$

Statistical variation Noise leve

$$F_n = \frac{1.9\%^2}{15.6 \times 10^{-6}} \approx 23$$

Formulism for Fano factor

$$F_N = \sqrt{\frac{E_x}{E_g} \left(\frac{W_i}{E_g} - 1\right)}$$
$$F_n = \sum_{i=1}^m \left(1 + \epsilon(F_N - 1)\right)$$

- If $F_n = 23$, with one PMT, $\overline{F_n} = 0.95$, Then, about 24 PMTs are triggered.
- If $F_N = 0.059$, $\epsilon = 9\%$, $F_n = 0.91$ for one PMT.

 Nuclear recoils Fano factor is always greater than that for electronic recoils.

Discrimination on ER and NR

 At low energies, statistical variation dominates energy resolution.

- Number of electron-hole pairs decreases as energy decreasing, Fano factor becomes larger, subsequently, statistical variation becomes larger.
- *W_i* increases as energy decreasing.

Conclusions

- Energy response to both electronic recoils and nuclear recoils are non linear.
- Due to high ionization density at low energies, additional quenching is involved.
- Absolute energy calibration requires low energy electronic recoil calibration.
- Fano factor dominates the energy resolution in the low energy region.
- Average energy per electron-hole pair leads to the difference of Fano factor between NR and ER.
- The difference in Fano factor impact on the nuclear band width and electronic recoil band width.

Thanks