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Motivation — the DAMA controversy

Have we detected dark matter yet? DAMA says yes, others say no.
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Motivation — the DAMA controversy

Have we detected dark matter yet? DAMA says yes, others say no.
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Motivation — Quenching in Nal(TI)

If DAMA is seeing dark matter, what can we say about dark matter?
DAMA signal region: (2, 6) keV , what is the nuclear recoil energy?
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Experimental setup

Goal: ~5% measurement 5-50 keV_ Na recoils

Reliable Na nuclear recoil calibration for Nal(TI) experiments
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Features:
* Low energy neutrons

* Pulsed beam, neutron
tagging (double-TOF
methods)

° Small Nal(Tl) crystal (low
multiple scattering)

* High light yield
* Low energy threshold
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Event selection — Time of flight

TOF1: time of flight from LiF to Nal(Tl)
TOF2: time of flight from LiF to liquid scintillator (LS) neutron detectors
Vertical bands:
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Energy calibration (in-run)

Neutron inelastic scattering on '*’] : o %01/33
Constant 1281+1.01
(57.6keV gamma) : Mean  40350:04 £ 1781602

Sigma 2513 +193.2

Provide in-run energy calibration

Monitor and correct light yield
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Neutron scattering simulation

Simulation package: Geant4.9.6.p3 (custom-built user interface)

80 processors x 300 hours = >10 billion neutron events (<4 degrees)

Recoil Energy Spectrum in Nal(Tl)

Hits recorded in Nal(T)):

1.Na recoils

— Single Na Recoils

— Na and | Recoils

2.1 recoils 10°
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Quenching factor evaluation

Fit observed Na recoil spectra to simulation around the peak region.

Uncertainties will be discussed in details later.

NaRecoil ~30keVr

ol x> / ndf 33.26 / 26
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Na quenching results
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Implications of new Na quenching results
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Technical Discussions




Uncertainties 1n the measurement

1. Statistic uncertainties: event rate

2. Systematic uncertainties

p beam LiF Nal
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* Choice of proton/neutron energy
* Protons energy loss in LiF

° Li(p,n)Be neutrons have angular & energy spreads
° Gamma backgrounds from LiF target

* Nal(TI) and nDets have finite sizes

* Scattering angle has spreads

° Multiple scattering exists: Na, I, Na+Na, Na+I...

Background event contaminations




Beam-related Uncertainties

Beam facility: Tandem accelerator at the Notre Dame University
Statistical uncertainty:

* Pulse intensity: ~ 60,000 protons/pulse (20nA)

* Proton energy chosen: 2.44 MeV (o [p-n] & o [n-Na])

* LiF target thickness: 0.52 mg/cm?
Systematic uncertainties:

* Neutron energy spread (from LiF thickness): ~700+/- 35 keV

* Gamma background: Tantalum backing to absorb proton with
low gamma production

* Pulse width: ~2ns (TOF uncertainty)

* Pulse period: 101.5 x N ns (N=6, 8) reduce pileups




Proton energy loss 1n LiF

Protons lose up to ~70 keV energy in LiF before Li(p,n)Be
Neutron energy: 700 +/- 35 keV
Simulation agrees with NIST pstar data
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“Pure neutron scattering”

Not only neutrons! %W
1. "Li excitation (478keV) %

2. F excitation (197keV, | @
89 ns half life) Yok

3. ¥Na excitation (440keV)
4. 1271 excitation (203keV)
5. 1?7 excitation (58keV)

6. 2Na recoils

Continuous gamma
background not labelled.
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Detector-related uncertainties

Large Nal(TI) crystals give high event rate but high uncertainty.

Uncertainty mitigations:

* 17 Nal(T1I) crystal
* 3”high Q.E. PMT | Nal(Tl)

Detector

* High reflectivity reflectors
* Thin wall enclosure

* hollow supporting structure

Neutron
Detector




Detector Layout uncertainties

Keep angular uncertainty at <5% while allowing high rate and TOF
* LiF — Nal(T]) distance: 0.5m (1* run), 0.91m (2" run)
* Nal(TIl) — nDet distance: ~0.5m (2 nDet) up to 2m (5 nDet)
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Summary of Uncertainties

Uncertainties included in the final analysis:
1. Directly from spectral fit:
~1-3%
2. Varying spectral fit ranges:
<3%
3. Light yield calibration:
~1.5% (57.6 keV Y)
4. Detector position:

determined by kinematics, 3-12%

Overall uncertainty for Na recoil > 10 keVr: ~5% as expected




What we did right — Rate calculation

Factors to consider in the event rate calculation:
1. Proton beam luminosity, and pulse selector condition
. Li(p,n)Be yield, LiF thickness
. Li(p,n)Be neutron angular distribution
. n — *Na scattering cross section

n — »Na scattering kinematics

< R T R ICR

. LS detector neutron detection efficiency
7. Trigger/cut efficiencies

Our calculation was within a factor of 3 compared to observation!

- We also managed to make the ~5% uncertainty measurement with 2
- days of beam — a good compromise between rate and uncertainty.

e




What we did right — PSD 1n NDs

Low energy recoil spectrum suffers from noise.

LS neutron detectors have good pulse shape discrimination capability!
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What we did right — Trigger efficiency

Low energy events may not trigger the DAQ (~1.5 p.e. threshold)

Method: to record Nal(T1) pulses of variable heights together with the
corresponding discriminator output.

25-mm Nal(T1) Detector
(used in measurement)

76-mm Bicron Detector

13384
@)
241 Am
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Trigger
Discriminator E Digitizer

Phillips 711 (CAEN VI1720E)




What can be better — Trigger Threshold

Trigger threshold was limited by 1) low PMT gain (10 stage PMT
chosen for high Q.E.) and 2) discriminator capability.

With a lower threshold, we may have observed 1) lower energy Na
recoils, and 2) elastic I recoils (~5x lower recoil energy).
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What can be better — Detector positions

Largest uncertainty in the measurement comes from
1. Uncertainties in the detector positions

2. Spread of scattering angle for small-angle scattering events

” Neutron

50 cm
Nal(TI)

Detector

5 Neutron
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Conclusion

* Neutron scattering spectrometry is a powerful tool to calibrate
detector response to nuclear recoils

* Neutron TOF i1s powerful in rejecting backgrounds

* Pulsed neutron facility can provide additional TOF

° Pulse shape analysis can select clean neutron events

° Multiple scattering needs to be suppressed as much as possible

*  Monte Carlo simulations can be used to refine the kinematics

For more information, refer to:
Xu et al, Phys. Rev. C 92, 015807
http://dx.do1.org/10.1103/PhysRevC.92.015807
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Controversy about DAMA/LIBRA

Assumptions in standard WIMP sensitivity calculation:

* “Standard WIMP halo”
*  Local WIMP density ~0.3 GeV/cm? (perfect halo)
°  Only 1 WIMP species

* Maxwellian velocity distribution (WIMPs in thermal equilibrium)
* Galactic velocity (v,~220 km/s, v_ ~600km/s)

€S8C

* “Standard WIMP-nucleon interaction”
* Equal cross section to protons and neutrons
° May or may not have spin-exchange

° Coherent scattering (nuclear form factor)

o [ )
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Which o ‘these assumptions are known? NONE!
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Beam neutron generation

Li(p,n)Be Cross Section Histogram

Database: Burke 1974 paper
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Electronics and DAQ

Trigger: Nal(Tl) && (2 nDet) | \ I
Coincidence window: 400 ns, to

. . Gran Sasso x10 x10 Linear Amplifier
include maximum TOF Amphfis i '” )
Trigger threshold: ooy T, o e
~1.5 photoelectron 3
Low Threshold Discriminator
Digitizer: CAEN V1720E, =
250MS/s, 12 bit, loop buffer Logle Tt
DAQ window: (-2, 6) us v
. NIM 375L (AND)
DAQ software: custom built %
Online analysis: v —> [en] [
Discrimintaor s
TOF spectra et TV T <
Energy spectra of coincidence YY VY
Y7 Computer




Wavetorm example
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