Large Scale Structure and Cannibal Dark Matter

Manuel Buen-Abad, BU Razieh Emami, HKUST Martin Schmaltz, BU 1803.08062

Outline

1. data matter power spectrum σ_8

2. model partially cannibalistic dark matter

CMB - Planck 2015

Planck 2016 (TT,TE,EE,LowP)

"Cosmic Concordance"

$\Omega_{ m b} h^2$	0.02225 ± 0.00016
$\Omega_{ m c}h^2$	0.1198 ± 0.0015
$100\theta_{MC}$	1.04077 ± 0.00032
τ	0.079 ± 0.017
$\ln(10^{10}A_{\rm s})$	3.094 ± 0.034
$n_{\rm s}$	0.9645 ± 0.0049
H_0	67.27 ± 0.66

Planck 2016 (TT,TE,EE,LowP)

"Cosmic Concordance"

$\Omega_{ m b} h^2$	0.02225 ± 0.00016
$\Omega_{ m c}h^2$	0.1198 ± 0.0015
$100\theta_{MC}$	1.04077 ± 0.00032
τ	0.079 ± 0.017
$\ln(10^{10}A_{\rm s})$	3.094 ± 0.034
$n_{\rm s}$	0.9645 ± 0.0049
H_0	67.27 ± 0.66

 $H_0 = 73.24 \pm 1.74$ (Riess)

Planck 2016 (TT,TE,EE,LowP)

"Cosmic Concordance"

$\Omega_{ m b}h^2$	0.02225 ± 0.00016
$\Omega_{\rm c} h^2$	0.1198 ± 0.0015
$100\theta_{MC}$	1.04077 ± 0.00032
τ	0.079 ± 0.017
$\ln(10^{10}A_{\rm s})$	3.094 ± 0.034
$n_{\rm s}$	0.9645 ± 0.0049
H_0	67.27 ± 0.66

 $\sigma_8 \ldots \ldots \ldots \ldots \qquad 0.831 \pm 0.013$

 σ_8 = moment of the matter power spectrum

Matter power spectrum from weak lensing

DES astro-ph/150705552

Matter power spectrum —> σ_8

KiDS-450: weak lensing power spectrum

1706.02892v1 [astro-ph.CO] 9 Jun 2017

growth of perturbations

k=0.2 Mpc⁻¹

DM naturalness problem

- particle DM
 abundance determined by standard mechanism

M K Mplanck

Solutions:

1.
$$M_{DM}$$
 related to scales of "SM": WIMP
 M_{V}
GUT ...

2. New scale from dimensional transmutation:

Simplest natural dark sector mon-Abelian (pure) gauge theory

automatically decoupled from SM

dark dynamics

mistake: ignored interactions gueballs

thermal equilibrium

mistake: ignored interactions gueballs

"cannibalism" heat source => chemical equilibrium

growth of perturbations in cannibals

 $\ddot{\delta}_{\rm can} + \mathcal{H}\dot{\delta}_{\rm can} + k^2 c_s^2 \delta_{\rm can} = -k^2 \psi$

growth of DM perturbations in presence of cannibals

а

Varying parameters: Fraction of DM that cannibalizes

Varying parameters: When cannibalism stops

issues not discussed

o glueball spectrum dependence

9 global fit: CLASS, Monte Python

• M, T~ S¹³ parameter space

o glueball spectrum dependence

global fit: CLASS, Monte Python

Conclusions

 future MPS measurements are precision tests of ACDM
 mon-standard DM models can predict different MPS shapes

· partially cannibalistic DM suppresses MPS

-> solution to Jg problem ?

back up!

Galaxy Power Spectrum, SDSS-DR7, "straight up"

Galaxies don't track dark matter perfectly

"Galaxy bias" $P_{DM}(k) = P_{gal}(k) (a + b k + c k^2)$

Galaxy Power Spectrum, SDSS-DR7

