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Measurements of CMB spectrum will open a new 
unexplored window to the early Universe!



Physical mechanisms that lead to spectral distortions

• Cooling by adiabatically expanding ordinary matter                                                                     

(JC, 2005; JC & Sunyaev 2011; Khatri, Sunyaev & JC, 2011)

• Heating by decaying or annihilating relic particles                                                       
(Kawasaki et al., 1987; Hu & Silk, 1993; McDonald et al., 2001; JC, 2005; JC & Sunyaev, 2011; JC, 2013; JC & Jeong, 2013)

• Evaporation of primordial black holes & superconducting strings                                                                            
(Carr et al.  2010; Ostriker & Thompson, 1987; Tashiro et al. 2012; Pani & Loeb, 2013)

• Dissipation of primordial acoustic modes & magnetic fields                                                                
(Sunyaev & Zeldovich, 1970; Daly 1991; Hu et al. 1994; JC & Sunyaev, 2011; JC et al. 2012 - Jedamzik et al. 2000; Kunze & Komatsu, 2013)

• Cosmological recombination radiation                                                                     
(Zeldovich et al., 1968; Peebles, 1968; Dubrovich, 1977; Rubino-Martin et al., 2006; JC & Sunyaev, 2006; Sunyaev & JC, 2009)

•                                                                                  

• Signatures due to first supernovae and their remnants                                        
(Oh, Cooray & Kamionkowski, 2003)

• Shock waves arising due to large-scale structure formation                                    
(Sunyaev & Zeldovich, 1972; Cen & Ostriker, 1999)

• SZ-effect from clusters; effects of reionization                                                              
(Refregier et al., 2003; Zhang et al. 2004; Trac et al. 2008)

• more exotic processes                                                                                          
(Lochan et al. 2012; Bull & Kamionkowski, 2013; Brax et al., 2013; Tashiro et al. 2013)

„high“ redshifts

„low“   redshifts
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What does the spectrum look like after energy injection?
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Response function: 
energy injection ⇒ distortion

Intensity signal for different heating redshifts
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Distortion contains much more 
information than previously thought!
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Transition from y-distortion → µ-distortion

Figure from Wayne Hu’s PhD thesis, 1995

increasing num
ber of scatterings 

Photon production 
neglected



Transition from y-distortion → µ-distortion

Figure from Wayne Hu’s PhD thesis, 1995

increasing num
ber of scatterings 

hybrid distortion is not 
just superposition of y- 
and µ- case!!!

Photon production 
neglected



Thermalization from y → µ at low frequencies

Burigana, De Zotti & Danese, 1991, ApJ
Burigana, Danese & De Zotti, 1991, A&A

• amount of energy 

↔ amplitude of distortion
↔ position of ‘dip’

• hydrid case (3x105 ≥ z ≥ 10000)   
⇒ superposition between µ & y + residual

• details at very low frequencies change

Effect of photon production! All calculations start with y-distortion here



Distortion not just superposition of µ and y-distortion!

Computation carried out with CosmoTherm      
(JC & Sunyaev 2011)

Decaying particle with 
lifetime tX ~ 2.4 x 109 sec

• Explicit calculation that emphasized that there is more



Distortion not just superposition of µ and y-distortion!

Computation carried out with CosmoTherm      
(JC & Sunyaev 2011)

Decaying particle with 
lifetime tX ~ 2.4 x 109 sec

   Final distortion not just 
µ + y! More information!

• Explicit calculation that emphasized that there is more
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Physical mechanisms that lead to spectral distortions

• Cooling by adiabatically expanding ordinary matter                                                                     

(JC, 2005; JC & Sunyaev 2011; Khatri, Sunyaev & JC, 2011)

• Heating by decaying or annihilating relic particles                                                       
(Kawasaki et al., 1987; Hu & Silk, 1993; McDonald et al., 2001; JC, 2005; JC & Sunyaev, 2011; JC, 2013; JC & Jeong, 2013)

• Evaporation of primordial black holes & superconducting strings                                                                            
(Carr et al.  2010; Ostriker & Thompson, 1987; Tashiro et al. 2012; Pani & Loeb, 2013)

• Dissipation of primordial acoustic modes & magnetic fields                                                                
(Sunyaev & Zeldovich, 1970; Daly 1991; Hu et al. 1994; JC & Sunyaev, 2011; JC et al. 2012 - Jedamzik et al. 2000; Kunze & Komatsu, 2013)

• Cosmological recombination radiation                                                                     
(Zeldovich et al., 1968; Peebles, 1968; Dubrovich, 1977; Rubino-Martin et al., 2006; JC & Sunyaev, 2006; Sunyaev & JC, 2009)

•                                                                                  

• Signatures due to first supernovae and their remnants                                        
(Oh, Cooray & Kamionkowski, 2003)

• Shock waves arising due to large-scale structure formation                                    
(Sunyaev & Zeldovich, 1972; Cen & Ostriker, 1999)

• SZ-effect from clusters; effects of reionization                                                              
(Refregier et al., 2003; Zhang et al. 2004; Trac et al. 2008)

• other exotic processes                                                                                          
(Lochan et al. 2012; Bull & Kamionkowski, 2013; Brax et al., 2013; Tashiro et al. 2013)

„high“ redshifts

„low“   redshifts
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Reionization and structure formation



Simple estimates for the distortion

• Gas temperature T ≃ 104 K

• Thomson optical depth  ! ≃ 0.1

• second order Doppler effect y ≃ few x 10-8

• structure formation / SZ effect (e.g., Refregier et al., 2003)   y ≃ few x 10-7-10-6

=) y ' kTe

mec2
⌧ ⇡ 2⇥ 10�7



Simple estimates for the distortion

• Gas temperature T ≃ 104 K

• Thomson optical depth  ! ≃ 0.1

• second order Doppler effect y ≃ few x 10-8

• structure formation / SZ effect (e.g., Refregier et al., 2003)   y ≃ few x 10-7-10-6

=) y ' kTe

mec2
⌧ ⇡ 2⇥ 10�7

See David’s talk! 



Average CMB spectral distortions
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• Huge ‘foreground’ signal!

• makes it ‘hard’ to use y-distortion 
part of primordial signals!
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Average CMB spectral distortions
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Signal detectable with very 
high significance using 
present day technology!



Fluctuations of the y-parameter at large scales

Example: 
Simulation of reionization process 
(1Gpc/h) by Alvarez & Abel

• spatial variations of the 
optical depth and 
temperature cause 
small-spatial variations 
of the y-parameter at 
different angular scales

• could tell us about the 
reionization sources 
and structure formation 
process

• additional independent 
piece of information! 

• Cross-correlations with 
other signals 
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High frequencies 
only reached for 
Comptonization by 
hot electrons
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relativistic SZ will be a ‘foreground’ for 
constraining early Universe scenarios!



Decaying (dark matter) particles



Early constraints from CMB measurements

Hu & Silk, 1993

• Simple estimates for µ and y-
distortion from energy arguments 
just like we discussed above

• Early COBE/FIRAS limits

• constraint a little tighter for short 
lifetimes than estimated...
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during the era of µ-type distortions, one has17 (Danese & de Zotti
1982; Hu & Silk 1993a; Chluba 2005)

µ∞ ≈ µh e−[(1+zh)/(1+zµ)]5/2
, (37)

where the thermalization redshift

zµ = 1.98 × 106

(
1 − Yp/2

0.88

)−2/5 (
!bh

2

0.022

)−2/5

(38)

was already used several times above. For µh, Sunyaev & Zeldovich
(1970c) gave the well-known approximation µh ≈ 1.4("ργ /ργ ),
where it is assumed that a negligible amount of photons is injected,
but bulk of the energy comes out as heat.

In equation (37), the exponential factor acts as a visibility function
for spectral distortions. At redshifts z ! zµ, practically all energy
ends up as CMB spectral distortion, while at z " zµ thermaliza-
tion exponentially suppresses the residual distortion with double
Compton emission being the main source of photons.

To compute the total distortion arising in the µ-era from decaying
particles, one simply has to calculate the spectral visibility weighted
energy release rate:

¯"ργ

ργ

∣∣∣∣
dec

≈
∫

1
ργ

dE

dt

∣∣∣∣
dec

e−[(1+z)/(1+zµ)]5/2
dt, (39)

which, assuming radiation domination, in our parametrization,
equation (27) reads

¯"ργ

ργ

∣∣∣∣
dec

≈ 10−5

(
f ∗

X

8 × 105 eV

) (
1 − Yp

0.75

) (
!bh

2

0.022

)

×
(

1 + zX

5 × 104

)−1

J̄ ,
(40)

where we defined the integral

J̄ = 2√
π

∫ z2
X

0
dξ

√
ξ e−(ξ+λ

5/2
X ξ−5/4), (41a)

λX!1
≈ 2

3
211/18 54/9 λ

10/9
X exp

(
− 9 λ

10/9
X

28/9 55/9

)
, (41b)

with λX = (1 + zX)/(1 + zµ). The integral J̄ can easily be solved
numerically and is shown in Fig. 16 together with the result from
the approximation, equation (41b), which works very well for
zX " zµ.

In the work of Hu & Silk (1993b), this estimate was performed
in a slightly different way. There, it was assumed that all the energy
released by the decaying particles is effectively injected at time
teff ∼ tX . This can be concluded from equation (8) of their paper,
where the exponential factor reads e−(tdC/tX )5/4 ≡ e−λ

5/2
X , which im-

plies J̄Hu ≈ e−λ
5/2
X . In Fig. 16, we also plotted this version for J̄

and find that for zX > zµ it strongly underestimates the actual value
of J̄ , as already pointed out by Chluba (2005). This implies that
the limits derived from COBE/FIRAS for particles with lifetimes
tX ! 6 × 106 s are significantly stronger.

Numerically, we were able to compute the efficiency function
J̄ using COSMOTHERM. In practice, J̄ just defines how much of the
energy that was released remains visible as spectral distortion today.
Assuming a constant total energy release, one can therefore compute
J̄ by simply varying the lifetime of the particle and comparing the

17 In a baryon-dominated Universe, BR is more important than DC emission.
In this case, one has µ∞ ≈ µh e−[(1+zh)/(1+zbr)]5/4

, with zbr ∼ 6.2 × 106

(Sunyaev & Zeldovich 1970c).
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Figure 16. Resulting efficiency integral J̄ for decaying particles with life-
times corresponding to redshift zX .
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Figure 17. CMB spectral distortion at z = 200 after energy release by
decaying particles with redshift zX = f X = 5 × 106 and "ρ/ρ ∼ 6.3 ×
10−7. In this figure the importance of BR is illustrated. Also, we show
simple analytic approximations according to equation (32), with µ∞ = 2.65
× 10−8 and x = 1.6 × 10−2 in the case with BR, and µ∞ = 1.8 × 10−8 and
x = 1.6 × 10−3 in the other.

effective value for µ∞ with the total amount of injected energy.
To make the results more comparable, we switched off BR, since
for the estimate above this was not included consistently. This also
makes it easier to define µ∞ as the late changes in the distortion at
low frequencies do not arise (see Fig. 17). From Fig. 17 we can also
see how much the low-frequency spectrum is affected by BR. The
position of the maximal temperature dip in the case without BR is
close to x ∼ 1.6 × 10−3, while with BR it is at x ∼ 1.6 × 10−2.
This demonstrates the well-known fact that DC becomes inefficient
at low redshifts (see Danese & de Zotti 1982).

The result of this exercise is also shown in Fig. 16 for "ργ /ργ ∼
6.4 × 10−6. As one can see, the agreement with the analytic estimate
is excellent for this amount of energy injection. However, for larger
energy injection we found that J̄num < J̄ at z > zµ. Also, when

C© 2011 The Authors, MNRAS 419, 1294–1314
Monthly Notices of the Royal Astronomical Society C© 2011 RAS

Visibility integral for 
decaying particles

JC, 2005; JC & Sunyaev, 2012



Average CMB spectral distortions

10 30 60 100 300 600 1000
ν [GHz]

10-28

10-27

10-26

10-25

10-24

10-23
Δ
I ν

 [ 
W

 m
-2

 s-1
 H

z-1
 sr

-1
 ]

Reionization

Decaying particle

Monopole distortion signals

PIXIE’s sensitivity  

negative branch: ‘thin’

A
bs

ol
ut

e 
va

lu
e 

of
 In

te
ns

ity
 s

ig
na

l positive branch: ‘heavy’

Example:
lifetime tX ~ 114 yrs

�⇢

⇢
' few ⇥ 10�7



Average CMB spectral distortions

10 30 60 100 300 600 1000
ν [GHz]

10-28

10-27

10-26

10-25

10-24

10-23
Δ
I ν

 [ 
W

 m
-2

 s-1
 H

z-1
 sr

-1
 ]

Reionization

Decaying particle

Monopole distortion signals

PIXIE’s sensitivity  

negative branch: ‘thin’

A
bs

ol
ut

e 
va

lu
e 

of
 In

te
ns

ity
 s

ig
na

l positive branch: ‘heavy’

Spectral distortions provide 
probe of particle physics!

Signature of Particles with 
different lifetimes can be 
distinguished!

Example:
lifetime tX ~ 114 yrs

�⇢

⇢
' few ⇥ 10�7



Text

10
3

10
4

10
5

10
6

redshift z

10
-8

10
-7

10
-6
ef

fe
ct

iv
e 

h
ea

ti
n

g
 r

at
e 

(1
+

z)
 d

(Q
/ρ

) 
/ 

d
z

z
X

 = 2x10
4

z
X

 = 8x10
4

z
X

 = 3x10
5

µ - distortiony - distortion µ−y transition

f
X

 / z
X

 = 1 eV

Decaying particle scenarios

JC & Sunyaev, 2011, Arxiv:1109.6552
JC, 2013, Arxiv:1304.6120



CMB spectral distortions 1309

10
-3 0.01 0.1 1 10 20 50

x

-5×10
-5

-4×10
-5

-3×10
-5

-2×10
-5

-1×10
-5

0

T(
x)

 / 
T C

M
B
 -

 1

zX = 3 x 10
6

zX = 2 x 10
6

zX = 1 x 10
6

zX = 7.5 x 10
5

0.1 1 10 100 10
3

2000
ν  [GHz]

10
-3 0.01 0.1 1 10 20 50

x

-5×10
-5

-4×10
-5

-3×10
-5

-2×10
-5

-1×10
-5

0

T(
x)

 / 
T C

M
B
 -

 1

zX = 5 x 10
5

zX = 2.5 x 10
5

zX = 1 x 10
5

zX = 7.5 x 10
4

0.1 1 10 100 10
3

2000
ν  [GHz]

10
-3 0.01 0.1 1 10 20 50

x

-2×10
-6

0

2×10
-6

4×10
-6

6×10
-6

T(
x)

 / 
T C

M
B
 -

 1

zX = 5 x 10
4

zX = 2.5 x 10
4

zX = 1 x 10
4

zX = 8 x 10
3

0.1 1 10 100 10
3

2000
ν  [GHz]

Figure 12. CMB spectral distortion at z = 200 after energy injection from
decaying relic particles. In all cases, we fixed fdec = 2 zX eV, which cor-
responds to a total energy release of !ργ /ργ |dec ∼ 1.3 × 10−6. For the
effective temperature of the CMB, this implies !T ∗

γ /TCMB ∼ −3.2 × 10−7

at zs = 2 × 107 and at ze = 200 in all cases we found |!T ∗
γ /TCMB| ∼ 10−10.
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while blue indicates electrons cooler than this. The black/solid line shows
the case without annihilation for comparison.

frequencies the interplay between y-type and free–free distor-
tion becomes important, leading to another positive feature at
ν ∼ 500 MHz.

To understand a little better the effect of decaying particles on the
CMB spectrum, in Fig. 13 we present the evolution of the electron
temperature for some cases of Fig. 12. One can see that for decreas-
ing values of zX at high redshifts, the electron temperature follows
the case without energy injection for a longer period. Then, once the
heating by decaying particles becomes significant, the electron tem-
perature becomes larger than Tz. After the heating stops for cases
with zX ! 105, the relative difference in the electron temperature
remains rather constant, with only slow evolution. Because of the
heating the effective temperature of the CMB also increased, and
after it ceased the electrons simply keep the temperature dictated
by the distorted CMB photon field.

In cases with zX " 105, however, one can observe an extended
period after the maximal heating at which the electrons lose some
of their heat again. Having a closer look at the cases with zX ! 105

one can find the same there, but much less pronounced. At high
redshifts the Compton interaction is extremely fast and allows the
temperature of electrons and photons to depart only slightly, even
with significant energy release. At low redshifts, Compton scattering
becomes much less efficient, so that during energy release larger
differences between electrons and photons are possible. During
these periods the electrons are notably hotter than the CMB, so that
photons become up-scattered and a y-type signature can arise.

In Fig. 14 we illustrate the evolution of the CMB spectral distor-
tion caused by the heating from decaying particles with different
lifetimes. The upper panel gives an example for a particle with
short lifetime. The distortion is clearly close to a µ-type distortion
until very late times. The only difference is because of the effect
of electrons cooling significantly below the CMB temperature at
late times, introducing a small modification because of free–free
absorption in the 100 MHz frequency band. In the central panel,
we give a case which at the end has the character of both µ- and
y-type distortions. Initially, it starts like a µ-type distortion, but
heating continues to be significant down to z ∼ 105, when electrons

C© 2011 The Authors, MNRAS 419, 1294–1314
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Figure 14. Evolution of the CMB spectral distortion caused by the heating
from decaying particles with different lifetimes. At z ! 104, one can see the
effect of electrons starting to cool significantly below the temperature of the
photons, which leads to free–free absorption at very low frequencies.
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Figure 15. CMB spectral distortion at z = 200 after energy injection from
decaying relic particles with different lifetimes in the PIXIE bands. In all
cases we fixed fdec = 2 zX eV, which corresponds to a total energy release of
!ργ /ργ |dec ∼ 1.3 × 10−6. For the effective temperature of the CMB, this
implies !T ∗

γ /TCMB ∼ −3.2 × 10−7 at zs = 2 × 107, and at ze = 200 in all
cases we found |!T ∗

γ /TCMB| ∼ 10−10.

obtain temperature larger than the CMB, such that photons are
partially up-scattered. At the end of the evolution, the spectrum
remains in a state that is a mixture. Finally, in the lower panel of
Fig. 14 we give an example for a case that looks like a pure y-
distortion at high and intermediate frequencies. In this case, energy
is mainly released at times when Compton scattering is unable to
re-establish full kinetic equilibrium with the electrons. However, at
low frequencies one can again observe the effect of cooling electrons
during and after the epoch of recombination.

In Fig. 15 we show the distortions for some of the previous cases,
but focused on the spectral bands of PIXIE. In contrast to the case of
annihilating particles, where the shape of the distortion was rather
insensitive to the effective annihilation rate, for decaying particles
the shape of the distortion varies strongly with its lifetime. This
should make it possible to distinguish the effect of decaying parti-
cles from the other sources of energy release discussed so far. For
the chosen energy injection rate the typical amplitude of the dis-
tortions is !T /T ∼ 10−7−10−6, which is well within reach of the
PIXIE sensitivities. However, to forecast the possible constraints
from PIXIE requires consideration of more cases and realistic fore-
ground models.

3.6.1 Upper limits from analytic estimates

Hu & Silk (1993b) provided simple analytic expressions that allow
us to estimate the final spectral distortion after some energy release
caused by decaying relic particles. These expressions were widely
used in the literature to place limits on the possible amount of
decaying particles with different lifetimes, and here we wish to
compare them with the results of our computations.

To obtain the analytic estimates, one can start with the simple
approximations for single energy release at zh. At high redshifts,

C© 2011 The Authors, MNRAS 419, 1294–1314
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Figure 5. Lifetime e↵ect for di↵erent decaying particle scenarios. The up-
per panel shows the energy release rate for all cases, while the central panel
illustrates the distortion in comparison with a y-distortion of y = 2 ⇥ 10�7.
The lower panel shows the residual distortion after subtracting the best-fit
µ- and y-superposition.

a pure µ-distortion is insensitive to when it was created and thus
does not allow di↵erentiating between scenarios with di↵erent par-
ticle lifetimes at z & few ⇥ 105. Still, a tight upper limit on the
total amount of energy that is release can be placed, constrain-
ing the possible abundance of decaying particles with lifetimes
tX ' 6 ⇥ 106 sec � 3 ⇥ 108 sec.

These statements, however, depend strongly on the sensitiv-
ity of the experiment and on how large the average distortion is.
As explained above, the information about the particle lifetime is
largely encoded in the deviations from a pure superposition of µ and
y-distortion, however, the residual is a correction and thus higher
sensitivity or a larger distortion are needed to make use of that in-
formation. Assuming fX/zX = 1 eV and zX = 2 ⇥ 104, a PIXIE-
type experiment is unable to constrain the lifetime of the particle.
The degeneracy is already broken at twice the sensitivity of PIXIE,
yielding ' 29% error on fX/zX and ' 17% error on zX. This fur-
ther improves to ' 14% error on fX/zX and ' 9% error on zX for
four times the sensitivity of PIXIE. This energy release scenario
corresponds to �⇢�/⇢� ' 6.4 ⇥ 10�7, so that the distortion is com-
parable in amplitude to the y-signal from late times. Assuming that
less energy is liberated by the decaying particle increases the er-
rors (and hence the degeneracy), and conversely, for larger decay
energy the errors diminish. Overall, a PIXIE-type experiment will
provide a pretty good probe for long-lived particles with lifetimes
tX ' 5.8 ⇥ 108 sec � 1.4 ⇥ 1010 sec and fX/zX & 1 eV.

5 DISSIPATION OF SMALL-SCALE ACOUSTIC MODES

The prospect of accurate measurements of the CMB spectrum with
a PIXIE-type experiment spurred renewed interests in how primor-
dial perturbations at small-scales dissipate their energy (Chluba
& Sunyaev 2012; Khatri et al. 2012a; Pajer & Zaldarriaga 2012;
Chluba et al. 2012b; Dent et al. 2012; Ganc & Komatsu 2012;
Chluba et al. 2012a; Powell 2012; Khatri & Sunyaev 2013; Chluba
& Grin 2013). It was shown, that this e↵ect can be used to place
tight limits on the amplitude and shape of the power spectrum at
scales far smaller than what is probed with measurements of the
CMB anisotropies, in principle allowing to discover the distortion
signatures from several classes of early universe models (e.g., see
Chluba et al. 2012a).

Taking a conservative perspective, one can assume that the
power spectrum of curvature perturbations is fully determined by
CMB anisotropy measurements at large scales, implying an ampli-
tude A⇣ ' 2.2 ⇥ 10�9, spectral index nS ' 0.96, and its running
nrun ' �0.02, at pivot scale k0 = 0.05 Mpc�1 (Planck Collaboration
et al. 2013b). This is a significant extrapolation from wavenumbers
k < 1 Mpc�1 all the way to k ' few⇥104 Mpc�1, and it was already
argued that for a PIXIE-type experiment the signal remains just
short of the 1�-detection limit (Chluba & Sunyaev 2012; Chluba
et al. 2012b). Improving the sensitivity a few times will allow a de-
tection of this signal, however, given that the errors on A⇣ , nS, and
nrun from CMB data are now . 1%, to use spectral distortion as
a competitive probe, factors of ' 20 � 50 improvement are neces-
sary3. The strongest dependence of the distortion signal is due to
nrun (see Fig. 6 for illustration), since small changes a↵ect the am-
plitude of the small-scale power spectrum and hence the associated
spectral distortion by a large amount (Khatri et al. 2012a; Chluba

3 See Powell (2012) and Khatri & Sunyaev (2013) for some more in depth
discussion of this challenge.
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Figure 5. Lifetime e↵ect for di↵erent decaying particle scenarios. The up-
per panel shows the energy release rate for all cases, while the central panel
illustrates the distortion in comparison with a y-distortion of y = 2 ⇥ 10�7.
The lower panel shows the residual distortion after subtracting the best-fit
µ- and y-superposition.

a pure µ-distortion is insensitive to when it was created and thus
does not allow di↵erentiating between scenarios with di↵erent par-
ticle lifetimes at z & few ⇥ 105. Still, a tight upper limit on the
total amount of energy that is release can be placed, constrain-
ing the possible abundance of decaying particles with lifetimes
tX ' 6 ⇥ 106 sec � 3 ⇥ 108 sec.

These statements, however, depend strongly on the sensitiv-
ity of the experiment and on how large the average distortion is.
As explained above, the information about the particle lifetime is
largely encoded in the deviations from a pure superposition of µ and
y-distortion, however, the residual is a correction and thus higher
sensitivity or a larger distortion are needed to make use of that in-
formation. Assuming fX/zX = 1 eV and zX = 2 ⇥ 104, a PIXIE-
type experiment is unable to constrain the lifetime of the particle.
The degeneracy is already broken at twice the sensitivity of PIXIE,
yielding ' 29% error on fX/zX and ' 17% error on zX. This fur-
ther improves to ' 14% error on fX/zX and ' 9% error on zX for
four times the sensitivity of PIXIE. This energy release scenario
corresponds to �⇢�/⇢� ' 6.4 ⇥ 10�7, so that the distortion is com-
parable in amplitude to the y-signal from late times. Assuming that
less energy is liberated by the decaying particle increases the er-
rors (and hence the degeneracy), and conversely, for larger decay
energy the errors diminish. Overall, a PIXIE-type experiment will
provide a pretty good probe for long-lived particles with lifetimes
tX ' 5.8 ⇥ 108 sec � 1.4 ⇥ 1010 sec and fX/zX & 1 eV.

5 DISSIPATION OF SMALL-SCALE ACOUSTIC MODES

The prospect of accurate measurements of the CMB spectrum with
a PIXIE-type experiment spurred renewed interests in how primor-
dial perturbations at small-scales dissipate their energy (Chluba
& Sunyaev 2012; Khatri et al. 2012a; Pajer & Zaldarriaga 2012;
Chluba et al. 2012b; Dent et al. 2012; Ganc & Komatsu 2012;
Chluba et al. 2012a; Powell 2012; Khatri & Sunyaev 2013; Chluba
& Grin 2013). It was shown, that this e↵ect can be used to place
tight limits on the amplitude and shape of the power spectrum at
scales far smaller than what is probed with measurements of the
CMB anisotropies, in principle allowing to discover the distortion
signatures from several classes of early universe models (e.g., see
Chluba et al. 2012a).

Taking a conservative perspective, one can assume that the
power spectrum of curvature perturbations is fully determined by
CMB anisotropy measurements at large scales, implying an ampli-
tude A⇣ ' 2.2 ⇥ 10�9, spectral index nS ' 0.96, and its running
nrun ' �0.02, at pivot scale k0 = 0.05 Mpc�1 (Planck Collaboration
et al. 2013b). This is a significant extrapolation from wavenumbers
k < 1 Mpc�1 all the way to k ' few⇥104 Mpc�1, and it was already
argued that for a PIXIE-type experiment the signal remains just
short of the 1�-detection limit (Chluba & Sunyaev 2012; Chluba
et al. 2012b). Improving the sensitivity a few times will allow a de-
tection of this signal, however, given that the errors on A⇣ , nS, and
nrun from CMB data are now . 1%, to use spectral distortion as
a competitive probe, factors of ' 20 � 50 improvement are neces-
sary3. The strongest dependence of the distortion signal is due to
nrun (see Fig. 6 for illustration), since small changes a↵ect the am-
plitude of the small-scale power spectrum and hence the associated
spectral distortion by a large amount (Khatri et al. 2012a; Chluba

3 See Powell (2012) and Khatri & Sunyaev (2013) for some more in depth
discussion of this challenge.

c� 0000 RAS, MNRAS 000, 000–000

JC & Sunyaev, 2011, Arxiv:1109.6552
JC, 2013, Arxiv:1304.6120

Best-fit µ + y-distortion 
was removed

The residual distortion 
contains information 
about particle lifetime!



Decaying particle scenarios

JC, 2013, ArXiv:1304.6120

6 Chluba

(�⇤ ⌘ � � �f )

Fiducial values:

�f = 1.2 ⇥ 10�4

yre = 4 ⇥ 10�7

fann,s = 10�22 eV sec�1

fann,p = 10�26 eV sec�1

Figure 3. Large distortion s- and p-wave annihilation scenario. Contours
and lines are as before. Degeneracies between the parameters prevent a dis-
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nature should be possible, the two signals are simply too similar
and strong correlations cause large uncertainties and biases in the
parameters, which only disappear at high sensitivity. This makes
the projected 2D probability distributions shown in Fig. 3 very non-
Gaussian. At ' 20 times the sensitivity of PIXIE we find a ' 2�
detection of the s-wave annihilation signature and fann,p ' 1% from
the p-wave annihilation signal.

Considering a small distortion scenario with more compara-
ble contributions from s- and p-wave annihilations ( fann,s ' 2 ⇥
10�23 eV sec�1 and fann,p ' 10�28 eV sec�1), we find that an im-
provement of the sensitivity by a factor of ' 40 is needed to start
distinguishing the signals from both particles, rendering an analysis
along these lines more futuristic. This is because for this scenario
the signal is close to the detection limit of PIXIE, and the di↵er-
ences with respect to a pure superposition of µ- and y-distortion,
which could be used to distinguish the two cases, are only a small
correction, necessitating this large improvement of the sensitivity.

4 DECAYING PARTICLE SCENARIOS

Decaying relic particle with lifetimes ' 380 kyr (corresponding to
the time of recombination) are again tightly constrained by mea-
surement of the CMB anisotropies (Zhang et al. 2007; Giesen et al.
2012), while particles with lifetimes comparable to minutes can af-
fect the light element abundances and bounds derived from BBN
apply (Kawasaki et al. 2005; Jedamzik 2008). However, experi-
mental constraints for particles with lifetimes ' 106 � 1012 sec are
less stringent, still leaving rather large room for extra energy re-
lease �⇢�/⇢� . 10�6 � 10�5 (e.g., Hu & Silk 1993b; Kogut et al.
2011). Large energy-release rates are especially possible for very
light particles with masses . MeV. A PIXIE-type CMB experi-
ment thus has a large potential to discover the signature of some
long-lived relic particle, or at least provide complementary and in-
dependent constraints to these scenarios. If most of the energy is
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Figure 4. Large and small distortion decaying particle scenario. Contours
and lines are as before. For large energy release the distortion can be easily
constrained, however, for small energy release the parameter space becomes
more complicated and higher sensitivity improves matters significantly.

released at z & 3 ⇥ 105 a pure µ-distortion is created, so that this
case is practically degenerate, e.g., with scenarios that include an
annihilating particle with p-wave annihilation cross section. How-
ever, for energy release around z ' 5 ⇥ 104 the distortion can di↵er
su�ciently to become distinguishable.

In Fig. 4 we show the projected constraints for a large and
small distortion scenario, with energy release �⇢�/⇢� ' 6.4 ⇥ 10�6

and �⇢�/⇢� ' 1.3⇥10�7, respectively. Since the total energy release
scales as �⇢�/⇢� / fX/zX (cf. Chluba & Sunyaev 2012), it is best
to consider the variables fX/zX and zX ' 4.8 ⇥ 109 �1/2

X sec1/2 as
parameters. This reduces the parameter covariance significantly. To
accelerate the computation we furthermore tabulate the distortion
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nature should be possible, the two signals are simply too similar
and strong correlations cause large uncertainties and biases in the
parameters, which only disappear at high sensitivity. This makes
the projected 2D probability distributions shown in Fig. 3 very non-
Gaussian. At ' 20 times the sensitivity of PIXIE, we find a ' 2�
detection of the s-wave annihilation signature and fann,p ' 1% from
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Considering a small distortion scenario with more compara-
ble contributions from s- and p-wave annihilations ( fann,s ' 2 ⇥
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provement of the sensitivity by a factor of ' 40 is needed to start
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ever, for energy release around z ' 5⇥ 104, the distortion can di↵er
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and �⇢�/⇢� ' 1.3⇥10�7, respectively. Since the total energy release
scales as �⇢�/⇢� / fX/zX (cf. Chluba & Sunyaev 2012), it is best
to consider the variables fX/zX and zX ' 4.8 ⇥ 109 �1/2
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Why model-independent approach to distortion signal

• Model-dependent analysis makes model-selection non-trivial

• Real information in the distortion signal limited by sensitivity and foregrounds

• Principle Component Analysis (PCA) can help optimizing this!

• useful for optimizing experimental designs (frequencies; sensitivities, ...)!
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Fiducial values:

�f = 1.2 ⇥ 10�4

yre = 4 ⇥ 10�7

fann = 10�26 eV sec�1

Figure 2. Large p-wave annihilation scenario. The solid black lines show
the constraint for PIXIE sensitivity, while the red curves are for 4 times
higher sensitivity. The contours show 68% and 95% confidence levels. The
shaded regions illustrate the shape of the projected 2D probability distri-
bution function for PIXIE sensitivity only. The marginalized distributions
were all normalized to unity at the maximum.

Since the signal is directly proportional to fann, we find

� fann,p

fann,p
⇡ 2%

"
fann,p

10�26 eV sec�1

#�1 "
�I⌫
�IPIXIE
⌫

#�1

(6)

for the error, where �IPIXIE
⌫ ' 5 ⇥ 10�26 W m�2 s�1 Hz�1 sr�1 de-

notes PIXIE’s sensitivity (we confirmed this statement numeri-
cally). The rough 1�-detection limit of PIXIE therefore is fann,p '
2 ⇥ 10�28 eV sec�1. Increasing the sensitivity 2 or 4 times might be
within reach, e.g., by extending the total time spent on spectral dis-
tortion measurements or by slightly improving the instrument. As
our results show, this would further tighten possible limits on this
scenario, allowing us to constrain Majorana particles annihilating
into lighter fermions (Goldberg 1983).

Figure 2 also shows that the monopole temperature and reion-
ization y-parameter could be measured with impressive accuracy,
corresponding to �T ' 3 nK and �yre/yre . 1%. Both � and yre are
anti correlated with fann: although the annihilation distortion sig-
nal does not include any pure temperature shift contribution, it is
not fully orthogonal to the signal related to � [see. Eq. (5)]. Simi-
larly, every annihilation is associated with some late energy release
(z . 104), during the y-era, and thus boosted annihilation e�ciency
leaves less room for contribution to y from after recombination and
during reionization, explaining the behavior.

Assuming a relic particle with fann,p ' 10�28 eV sec�1, we find
that for PIXIE’s sensitivity the signal is below the detection limit,
and even at 4 times increased sensitivity, only a marginal detection
of the distortion caused by the annihilation energy release is possi-
ble. The measurements of � and yre are not severely compromised
by adding this possibility to the parameter estimation problem, be-
cause the additional signal is very small. To obtain an unambiguous
5�-detection of the p-wave annihilation signal in this scenario, the
sensitivity needs to be increased ' 10 times over PIXIE.

Assuming that the relic particle is non-relativistic without any
p-wave Sommerfeld enhancement one has h�vi / v2 / (1+ z)2. As
mentioned above, in this case most energy is released very early
causing a pure µ-distortion. However, the limits from BBN and
light-element abundances are expected to be much stronger, so that
we do not discuss this case any further.

Next we consider energy release due to s-wave annihilation,
for instance associated with a dark matter particle. The annihilation
e�ciency is already tightly constrained by the e↵ect on the CMB
anisotropies (Peebles et al. 2000; Chen & Kamionkowski 2004;
Padmanabhan & Finkbeiner 2005; Zhang et al. 2006), where the
best observational limit is obtained from WMAP (Galli et al. 2009;
Hütsi et al. 2009; Slatyer et al. 2009; Hütsi et al. 2011), translating
into fann,s . 2⇥10�23 eV sec�1 (Chluba et al. 2010). This case is as-
sociated with an energy release of�⇢�/⇢� ' 8.3⇥10�9, available for
spectral distortions. In contrast to the p-wave annihilation scenario,
energy is liberated more evenly per logarithmic redshift interval,
so that the associated spectral distortion lies between a µ and y-
distortion (see Fig. 1). Annihilations with fann,s ' 2⇥10�23 eV sec�1

remain undetectable, even at 4 times the sensitivity of PIXIE, in
agreement with conclusion from previous analyses (Chluba et al.
2010; Chluba & Sunyaev 2012). A ' 3�-detection becomes possi-
ble with 10 times the sensitivity of PIXIE.

On the other hand, assuming fann,s ' 10�22 eV sec�1, a ' 6�-
detection would be possible at 4 times PIXIE sensitivity, although
this scenario is already in tension with CMB anisotropy constraints.
The error for the s-wave annihilation scenario roughly scales as

� fann,s

fann,s
⇡ 17%

"
fann,s

10�22 eV sec�1

#�1 "
�I⌫

4�IPIXIE
⌫

#�1

. (7)

The current limit on fann,s derived from CMB anisotropies may be
improved by another factor of ' 6 (e.g., see Hütsi et al. 2009,
2011, for projections) with the next release of Planck (which will
include all the temperature and polarization data), ACTpol and SPT-
pol (Niemack et al. 2010; McMahon et al. 2009). At this level of
sensitivity it will be hard to directly compete using spectral distor-
tion measurements; however, the spectral distortion constraints are
independent and probe di↵erent epochs of the evolution, providing
another important handle on possible systematics, e.g., related to
possible uncertainties in the cosmological recombination process
(Farhang et al. 2012, 2013). Additional freedom could be added
due to Sommerfeld enhancement of the annihilation cross-section
(e.g., see Hannestad & Tram 2011), but a more detailed investiga-
tion of this aspect is beyond the scope of this work.

Figure 1 also indicates that in the p-wave annihilation scenario
with fann,p ' 10�26 eV sec�1 a similar amount of energy is deposited
during hydrogen recombination (z ' 103) as in the well constrained
s-wave annihilation scenario with fann,s ' 2 ⇥ 10�23 eV sec�1. We
thus did not consider cases with larger p-wave annihilation cross-
section, because these would already be in tension with the CMB
anisotropy data. Improving the limit on p-wave annihilation sce-
narios with CMB anisotropy measurements will, however, be very
hard and the distortion signal has a larger leverage, o↵ering a way
to detect the signatures from particles with p-wave annihilation ef-
ficiency fann,p & few ⇥ 10�28 eV sec�1 at PIXIE’s sensitivity.

Finally, in Fig. 3 for illustration we show the large distortion
scenario ( fann,s ' 10�22 eV sec�1 and fann,p ' 10�26 eV sec�1) of
Fig. 1, with simultaneous energy release due to particles with s-
and p-wave annihilation. The parameters becomes rather degen-
erate, and a separate detection of the s-wave annihilation e↵ect
remains challenging even at 4 times the sensitivity of PIXIE. Al-
though an individual detection of the s- or p-wave annihilation sig-
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• Principle component 
decomposition of the 
distortion signal

• compression of the 
useful information 
given instrumental 
settings

• new set of 
observables         
 p={y, µ, µ1, µ2, ...}

• model-comparison + 
forecasts of errors 
very simple!
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distortion

Using signal eigenmodes to compress the distortion data



2068 J. Chluba and D. Jeong

Figure 2. Energy branching ratios, Jk(z) according to equation (A1) (in
the figure the symbol J ≡ J ). We multiplied JR(z) by 10 to make it more
visible. For the construction, we assumed {νmin, νmax, "νs} = {30, 1000,
1}GHz and diagonal noise covariance.

space spanned by GT, Y SZ and M (see Appendix A for details). Once
the residual distortion is identified, we obtain all energy branching
ratios, Jk(z), of equation (4) by projecting the rest of the Green’s
function on to GT, Y SZ and M, respectively. The results are shown
in Fig. 2. We also defined JR(z) = 1 − JT (z) − Jy(z) − Jµ(z),
which determines the amount of energy found in the residual dis-
tortion only. At redshift z ! 4 × 104, most of the energy release
produces a y-distortion, while at 4 × 104 ! z ! 1.7 × 106 most of
the energy goes into a µ-distortion. At 1.7 × 106 ! z, the thermal-
ization process, mediated by Compton scattering, double Compton
emission and Bremsstrahlung, is so efficient that practically all en-
ergy just increases the average CMB temperature.

Around z $ 4 × 104, a few per cent of the energy is stored by
the residual distortion, and the amplitude of this signal depends
strongly on redshift (see Fig. 1). Although small in terms of energy
density, the residual distortion reaches $10–20 per cent of M(ν)
and YSZ(ν) at high frequencies, and can even be comparable to
M(ν) at ν ! 100 GHz. The fraction of energy release to the residual
distortion is extremal around z $ 3.8 × 104 (see Fig. 2), while
the low-frequency amplitude of the residual distortion is largest at
z $ 6.2 × 104 (see Fig. 1). In Fig. 1, we can also observe a small
dependence of the phase of the residual distortion on the redshift of
energy release. The redshift-dependent phase shift of the residual
distortion provides model-independent information about the time
dependence of the energy-release process, while analysis of the
superposition between µ- and y-distortion can only be interpreted
in a model-dependent way.

Fig. 2 also shows that µ-distortion and temperature shift have
a significant overlap around z $ 105. There Jµ(z) exceeds
unity, while JT (z) is negative. Similarly, for the chosen ex-
perimental setting JR(z) is negative, ensuring energy conserva-
tion. Although below z $ 105 photon production becomes very
weak and the thermalization of distortions to a temperature shift
ceases, the shape of the distortion still projects on to GT, lead-
ing to JT (z) %= 0. When thinking about the different contribu-
tions to the total distortion signal these points should be kept in
mind.

Another way to define the temperature shift is to integrate the
distortion over all frequencies. Scattering terms, to which the µ-

Figure 3. Residual function at redshift z $ 38 000 but for different in-
strumental settings. The annotated values are {νmin, νmax, "νs} and we
assumed diagonal noise covariance.

and y-distortion are related, conserve photon number density, so
that any deviation from zero should be caused by contributions
from a temperature shift, related to GT(ν). This approach was used
by Chluba (2013b), where by construction 0 < Jk(z) < 1 for k ∈
{T, y, µ, R}. In practice, i.e. with contaminations from foregrounds,
this procedure may not be applicable, and simultaneous fitting of
different spectral components is expected to work better. We there-
fore did not further follow this path.

2.2.1 Dependence on experimental settings

It is clear that the decomposition [R(ν, z) andJk(z)] presented above
depends on the chosen values for {νmin, νmax, "νs}. Changing the
frequency resolution has a rather small effect, while changing νmin

is more important (see Fig. 3). The differences are therefore mainly
driven by the way the distortion projects on to GT, M and YSZ

between νmin and νmax rather than how precisely the channels are
distributed over this interval.

Also, so far we assumed uniform and uncorrelated noise in the
different channels. In this case, the construction of the modes be-
comes independent of the value of "Ic, but more generally one has
to include this into the eigenmode analysis. This can be achieved
by redefining the scalar product of two frequency vectors, e.g.
a · b ≡

∑
ij ai C−1

ij bj , where Cij is the full noise covariance ma-
trix. Similarly, signals related to foregrounds can be included when
performing the decomposition of the Green’s function. These are
expected to lead to a degradation of the signal towards both lower
and higher frequencies; however, these aspects are beyond the scope
of this paper and will be explored in another work.

2.3 Energy release and branching ratios

The amplitude of the SD is directly linked to the total energy that was
released over the cosmic history. One way, which has been widely
applied in the cosmology community, to make this connection is to
use the effective µ and y-parameter to characterize the associated
distortion, µ $ 1.4 "ργ /ργ |µ and y $ (1/4) "ργ /ργ |y (Zeldovich
& Sunyaev 1969; Sunyaev & Zeldovich 1970). The total energy re-
lease causing distortions is "ργ /ργ |dist = "ργ /ργ |y + "ργ /ργ |µ,
with the partial contributions, "ργ /ργ |y and "ργ /ργ |µ, from the
y- and µ-era, respectively. In terms of the energy-release history,
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Figure 4. First few eigenmodes E(k) and S(k) for PIXIE-type settings
(νmin = 30 GHz, νmax = 1000 GHz and "νs = 15 GHz). In the mode
construction, we assumed that energy release only occurred at 103 ≤ z ≤
5 × 106.

amplitudes are positive for Q = const > 0. The first energy-release
mode, E(1), has a maximum at z # 5.3 × 104, while higher modes
show more variability, extending both towards lower and higher
redshift. The corresponding distortion modes, S(k), show increasing
variability and decreasing overall amplitude with growing k. They
capture all corrections to the simple superposition of pure µ- and
y-distortion, needed to morph between these two extreme cases.

In Table 1, we summarize the projected errors for the first six
mode amplitudes. The errors, "µk, increase rapidly with mode
number (this is how we order the eigenmodes), meaning that for a
fixed amplitude of the distortion signal the information in the higher
modes can only be accessed at higher spectral sensitivity.

Knowing the signal eigenvectors, S(k), we can directly relate
the mode amplitudes, µk, to the fractional energy, ε, stored by
the residual distortion. It thus allows us to estimate how much
information is contained by the residual distortion. Since integration
over frequency can be written as a sum over all frequency bins, with
εk = 4

∑
i S

(k)
i /

∑
i Gi,T we have ε ≈

∑
kεk µk. The first six εk are

given in Table 1. The signal modes, S(1) and S(2), contribute most to
the energy, while energy release into the higher modes is suppressed
by an order of magnitude or more.

Even if individual mode amplitudes cannot be separated, the
total energy density contained in the residual distortion might

Table 1. Forecasted 1σ errors of the first six eigenmode amplitudes, E(k).
We also give εk = 4

∑
i S

(k)
i /

∑
i Gi,T , and the scalar products S(k) · S(k)

(in units of [10−18 W m−2 Hz−1 sr−1]2). The fraction of energy release to
the residual distortion and its uncertainty are given by ε ≈

∑
kεk µk and

"ε ≈ (
∑

k ε2
k"µ2

k)1/2, respectively. For the mode construction we used
PIXIE-settings ({νmin, νmax, "νs} = {30, 1000, 15}GHz and channel
sensitivity "Ic = 5 × 10−26 W m−2 Hz−1 sr−1). The errors roughly scale as
"µk ∝ "Ic/

√
"νs.

k "µk "µk/"µ1 εk S(k) · S(k)

1 1.48 × 10−7 1 −6.98 × 10−3 1.15 × 10−1

2 7.61 × 10−7 5.14 2.12 × 10−3 4.32 × 10−3

3 3.61 × 10−6 24.4 −3.71 × 10−4 1.92 × 10−4

4 1.74 × 10−5 1.18 × 102 8.29 × 10−5 8.29 × 10−6

5 8.52 × 10−5 5.76 × 102 −1.55 × 10−5 3.45 × 10−7

6 4.24 × 10−4 2.86 × 103 2.75 × 10−6 1.39 × 10−8

still be detectable. The error of ε can be found using Gaussian
error propagation, "ε ≈ (

∑
k ε2

k"µ2
k)1/2 # {3.68 × 10−9, 3.53 ×

10−9, 3.14 × 10−9, 2.84 × 10−9}, where the numbers show, respec-
tively, uncertainties when all modes, all but µ1, all but µk with k ≤
2 and all but µk with k ≤ 3 are included. Another estimator for the
residual distortion is the modulus of the residual distortion vector
|R|2 ≈

∑
k S(k) · S(k) µ2

k . The required scalar product amplitudes
are also given in Table 1. Similar to ε, the error of |R|2 scales like
"|R|2 ≈ 2(

∑
k[S(k) · S(k)µk]2"µ2

k)1/2. Both ε and |R|2 can be used
to estimate how much information is left in the residual when the
mode hierarchy is truncated at some fixed value k. If the signal-to-
noise ratio is larger than unity, more modes should be added.

4 PARAMETER ESTIMATION USING
E N E R G Y- R E L E A S E E I G E N M O D E S

In the previous sections, we created a set of orthogonal signal modes
that can be constrained by future SD experiments and used to re-
cover part of the energy-release history in a model-independent
way. We derived a set of energy-release eigenmodes that describes
the residual distortion signal that cannot be expressed as simple
superposition of temperature shift, µ- and y-distortion.

As explained above, nothing can be learned from the change in the
value of the CMB temperature caused by energy release. Thus, the
useful part of the primordial signal is determined by the parameters
pprim = {y, µ, µk}. The number of residual modes, µk, that can
be constrained depends on the typical amplitude of the distortion
and instrumental aspects. To the primordial signal, we need to add
yre to describe the late-time y-distortion, and "T to parametrize the
uncertainty in the exact value of the CMB monopole. The total
distortion signal therefore takes the form

"Ii = "I T
i + "I

y
i + "I

µ
i + "IR

i

"I T
i = Gi,T"T [1 + "T ] + Yi,SZ "2

T /2

"I
y
i = Yi,SZ (yre + y)

"I
µ
i = Mi µ, (11)

where Gi,T, Yi,SZ and Mi are the average signals of GT, YSZ and M
over the ith channel. The dependence of "I T

i on "T is quadratic, but
since "T ( 1, the problem remains quasi-linear, with the second-
order term leading to a negligible correction to the covariance
matrix, once expanded around the best-fitting value for "T. For
estimates one can thus set "I T

i ≈ Gi,T "T without loss of gener-
ality. This defines the parameter set p = {"T, y∗, µ, µk}, where
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Figure 4. First few eigenmodes E(k) and S(k) for PIXIE-type settings
(νmin = 30 GHz, νmax = 1000 GHz and "νs = 15 GHz). In the mode
construction, we assumed that energy release only occurred at 103 ≤ z ≤
5 × 106.
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i /
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∑
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∑
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k)1/2, respectively. For the mode construction we used
PIXIE-settings ({νmin, νmax, "νs} = {30, 1000, 15}GHz and channel
sensitivity "Ic = 5 × 10−26 W m−2 Hz−1 sr−1). The errors roughly scale as
"µk ∝ "Ic/

√
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still be detectable. The error of ε can be found using Gaussian
error propagation, "ε ≈ (

∑
k ε2

k"µ2
k)1/2 # {3.68 × 10−9, 3.53 ×

10−9, 3.14 × 10−9, 2.84 × 10−9}, where the numbers show, respec-
tively, uncertainties when all modes, all but µ1, all but µk with k ≤
2 and all but µk with k ≤ 3 are included. Another estimator for the
residual distortion is the modulus of the residual distortion vector
|R|2 ≈

∑
k S(k) · S(k) µ2

k . The required scalar product amplitudes
are also given in Table 1. Similar to ε, the error of |R|2 scales like
"|R|2 ≈ 2(

∑
k[S(k) · S(k)µk]2"µ2

k)1/2. Both ε and |R|2 can be used
to estimate how much information is left in the residual when the
mode hierarchy is truncated at some fixed value k. If the signal-to-
noise ratio is larger than unity, more modes should be added.

4 PARAMETER ESTIMATION USING
E N E R G Y- R E L E A S E E I G E N M O D E S

In the previous sections, we created a set of orthogonal signal modes
that can be constrained by future SD experiments and used to re-
cover part of the energy-release history in a model-independent
way. We derived a set of energy-release eigenmodes that describes
the residual distortion signal that cannot be expressed as simple
superposition of temperature shift, µ- and y-distortion.

As explained above, nothing can be learned from the change in the
value of the CMB temperature caused by energy release. Thus, the
useful part of the primordial signal is determined by the parameters
pprim = {y, µ, µk}. The number of residual modes, µk, that can
be constrained depends on the typical amplitude of the distortion
and instrumental aspects. To the primordial signal, we need to add
yre to describe the late-time y-distortion, and "T to parametrize the
uncertainty in the exact value of the CMB monopole. The total
distortion signal therefore takes the form

"Ii = "I T
i + "I
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i + "I

µ
i + "IR

i

"I T
i = Gi,T"T [1 + "T ] + Yi,SZ "2

T /2

"I
y
i = Yi,SZ (yre + y)

"I
µ
i = Mi µ, (11)

where Gi,T, Yi,SZ and Mi are the average signals of GT, YSZ and M
over the ith channel. The dependence of "I T

i on "T is quadratic, but
since "T ( 1, the problem remains quasi-linear, with the second-
order term leading to a negligible correction to the covariance
matrix, once expanded around the best-fitting value for "T. For
estimates one can thus set "I T

i ≈ Gi,T "T without loss of gener-
ality. This defines the parameter set p = {"T, y∗, µ, µk}, where
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y∗ = yre + y. Note that because of the low-z contribution, it is
hard to disentangle the primordial components of !T and y∗. The
primordial energy release, therefore, is best constrained with µ and
the µks.

4.1 Errors of !T, y∗ and µ

As a first step, we estimate the errors on the values of !T, y∗ and µ

assuming PIXIE-like settings. The relevant projections to construct
the Fisher matrix, analogous to equation (9), are

GT · (GT, Y SZ, M) = (2.46 × 103, 1.23 × 103, 4.60 × 102)

Y SZ · (Y SZ, M) = (5.37 × 103, 5.62 × 102)

M · M = 1.23 × 102, (12)

all in units of [10−18 W m−2 Hz−1 sr−1]2. Defining α = !Ic/[5 ×
10−26 W m−2 Hz−1 sr−1], we expect errors !!T ≈ 2.34 × 10−9 α (or
!T % 6.4 α nK), !y∗ ≈ 1.20 × 10−9 α and !µ ≈ 1.37 × 10−8 α

at 1σ level. These numbers are close to the estimates given by
Kogut et al. (2011) for the expected 1σ errors on y- and µ-
parameter, and show that a huge improvement over COBE/FIRAS
(!y∗ ≈ 7.5 × 10−6 and !µ ≈ 4.5 × 10−5 at 1σ level) can be ex-
pected. Adding the residual distortion eigenmodes to the parameter
estimation should not affect these estimates as they are constructed
to be orthogonal to the signals from !T, y and µ.

4.2 Simple parameter estimation example: proof of concept

To illustrate how the modes can be used to constrain the energy-
release history, let us consider Q(z) ≡ 5 × 10−8 in the redshift in-
terval 103 < z < 5 × 106. Using equation (6), this implies a total
energy release of !ργ /ργ = 4.26 × 10−7, with !ργ /ργ |dist = 4y +
µ/α + ε ≈ 4.00 × 10−7 going into distortions. We also expect
y % 4.85 × 10−8, µ % 2.93 × 10−7 and !prim % −8.46 × 10−9

for the primordial distortion. The first three mode amplitudes are
µ1 = 5.14 × 10−7, µ2 = 4.34 × 10−9, and µ3 = 3.38 × 10−7,
and thus µ1 should be detectable with a PIXIE-like experiment (see
the !µk in Table 1). For illustration, we furthermore assume that
the value of the monopole temperature is T0 = 2.726 K(1 + !f)
with !f = 1.2 × 10−4, and that a low redshift y-distortion with
yre = 4 × 10−7 is introduced.

We implemented a simple Markov Chain Monte Carlo (MCMC)
simulation of this problem using COSMOTHERM. To compute the pri-
mordial distortion signal we used equation (3), i.e. we did not de-
compose the signal explicitly, but included all contributions to the
distortion. We then added a temperature shift with !f = 1.2 × 10−4

and a y-distortion with yre = 4 × 10−7 to the input signal, and anal-
ysed it using the model, equation (11), with only µ1 included. Fig. 5
shows the results of this analysis. All the recovered values and er-
rors agree with the predictions. We can furthermore see that µ1 does
not correlate to any of the standard parameters ps = {!T, y∗, µ}, as
ensured by construction. The standard parameters are slightly cor-
related with each other, since in the analysis we used Gi,T, Yi,SZ and
Mi which themselves are not orthogonal. Alternatively, one could
use the orthogonal basis Gi,T,⊥, Yi,SZ and Mi, ⊥ (see Appendix A),
but since the interpretation of the results is fairly simple we pre-
ferred to keep the well-known parametrization. We confirmed that
adding more distortion eigenmodes to the estimation problem does
not alter any of the constraints on the other parameters. This demon-
strates that the eigenmodes constructed above can be directly used
for model-independent estimations and compression of the useful
information provided by the CMB spectrum.

Figure 5. Analysis of energy-release history with Q(z) = 5 × 10−8 in the
redshift interval 103 < z < 5 × 106 using signal eigenmode, S(1) (Fig. 4). We
assumed {νmin, νmax, !νs} = {30, 1000, 15}GHz and channel sensitivity
!Ic = 5 × 10−26 W m−2 Hz−1 sr−1. The dashed blue lines and red crosses
indicate the expected recovered values. Contours are for 68 per cent and
95 per cent confidence levels. All errors and recovered values agree with the
Fisher estimates. We shifted !T by !i = !f + !prim with !f = 1.2 × 10−4

and !prim % −8.46 × 10−9, where !prim is the primordial contribution.

4.3 Partial recovery of the energy-release history

The energy-release eigenmodes define an ortho-normal basis to de-
scribe the energy-release history over the considered redshift range.
In the limit of extremely high sensitivity and very fine spectral cov-
erage (≡ all modes can be measured) a complete reconstruction
of the input history would be possible. Since realistically only a
finite number of energy-release eigenmodes (two or three really)
might be measured, this means that a partial but model-independent
reconstruction of the input energy-release history can be derived.

Considering the simple example, Q = 5 × 10−8, in Fig. 6 we
show the comparison of input history and the corresponding

Figure 6. Partial recovery of the input energy-release history, Q =
5 × 10−8.
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y∗ = yre + y. Note that because of the low-z contribution, it is
hard to disentangle the primordial components of !T and y∗. The
primordial energy release, therefore, is best constrained with µ and
the µks.

4.1 Errors of !T, y∗ and µ

As a first step, we estimate the errors on the values of !T, y∗ and µ

assuming PIXIE-like settings. The relevant projections to construct
the Fisher matrix, analogous to equation (9), are

GT · (GT, Y SZ, M) = (2.46 × 103, 1.23 × 103, 4.60 × 102)

Y SZ · (Y SZ, M) = (5.37 × 103, 5.62 × 102)

M · M = 1.23 × 102, (12)

all in units of [10−18 W m−2 Hz−1 sr−1]2. Defining α = !Ic/[5 ×
10−26 W m−2 Hz−1 sr−1], we expect errors !!T ≈ 2.34 × 10−9 α (or
!T % 6.4 α nK), !y∗ ≈ 1.20 × 10−9 α and !µ ≈ 1.37 × 10−8 α

at 1σ level. These numbers are close to the estimates given by
Kogut et al. (2011) for the expected 1σ errors on y- and µ-
parameter, and show that a huge improvement over COBE/FIRAS
(!y∗ ≈ 7.5 × 10−6 and !µ ≈ 4.5 × 10−5 at 1σ level) can be ex-
pected. Adding the residual distortion eigenmodes to the parameter
estimation should not affect these estimates as they are constructed
to be orthogonal to the signals from !T, y and µ.

4.2 Simple parameter estimation example: proof of concept

To illustrate how the modes can be used to constrain the energy-
release history, let us consider Q(z) ≡ 5 × 10−8 in the redshift in-
terval 103 < z < 5 × 106. Using equation (6), this implies a total
energy release of !ργ /ργ = 4.26 × 10−7, with !ργ /ργ |dist = 4y +
µ/α + ε ≈ 4.00 × 10−7 going into distortions. We also expect
y % 4.85 × 10−8, µ % 2.93 × 10−7 and !prim % −8.46 × 10−9

for the primordial distortion. The first three mode amplitudes are
µ1 = 5.14 × 10−7, µ2 = 4.34 × 10−9, and µ3 = 3.38 × 10−7,
and thus µ1 should be detectable with a PIXIE-like experiment (see
the !µk in Table 1). For illustration, we furthermore assume that
the value of the monopole temperature is T0 = 2.726 K(1 + !f)
with !f = 1.2 × 10−4, and that a low redshift y-distortion with
yre = 4 × 10−7 is introduced.

We implemented a simple Markov Chain Monte Carlo (MCMC)
simulation of this problem using COSMOTHERM. To compute the pri-
mordial distortion signal we used equation (3), i.e. we did not de-
compose the signal explicitly, but included all contributions to the
distortion. We then added a temperature shift with !f = 1.2 × 10−4

and a y-distortion with yre = 4 × 10−7 to the input signal, and anal-
ysed it using the model, equation (11), with only µ1 included. Fig. 5
shows the results of this analysis. All the recovered values and er-
rors agree with the predictions. We can furthermore see that µ1 does
not correlate to any of the standard parameters ps = {!T, y∗, µ}, as
ensured by construction. The standard parameters are slightly cor-
related with each other, since in the analysis we used Gi,T, Yi,SZ and
Mi which themselves are not orthogonal. Alternatively, one could
use the orthogonal basis Gi,T,⊥, Yi,SZ and Mi, ⊥ (see Appendix A),
but since the interpretation of the results is fairly simple we pre-
ferred to keep the well-known parametrization. We confirmed that
adding more distortion eigenmodes to the estimation problem does
not alter any of the constraints on the other parameters. This demon-
strates that the eigenmodes constructed above can be directly used
for model-independent estimations and compression of the useful
information provided by the CMB spectrum.

Figure 5. Analysis of energy-release history with Q(z) = 5 × 10−8 in the
redshift interval 103 < z < 5 × 106 using signal eigenmode, S(1) (Fig. 4). We
assumed {νmin, νmax, !νs} = {30, 1000, 15}GHz and channel sensitivity
!Ic = 5 × 10−26 W m−2 Hz−1 sr−1. The dashed blue lines and red crosses
indicate the expected recovered values. Contours are for 68 per cent and
95 per cent confidence levels. All errors and recovered values agree with the
Fisher estimates. We shifted !T by !i = !f + !prim with !f = 1.2 × 10−4

and !prim % −8.46 × 10−9, where !prim is the primordial contribution.

4.3 Partial recovery of the energy-release history

The energy-release eigenmodes define an ortho-normal basis to de-
scribe the energy-release history over the considered redshift range.
In the limit of extremely high sensitivity and very fine spectral cov-
erage (≡ all modes can be measured) a complete reconstruction
of the input history would be possible. Since realistically only a
finite number of energy-release eigenmodes (two or three really)
might be measured, this means that a partial but model-independent
reconstruction of the input energy-release history can be derived.

Considering the simple example, Q = 5 × 10−8, in Fig. 6 we
show the comparison of input history and the corresponding

Figure 6. Partial recovery of the input energy-release history, Q =
5 × 10−8.
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Figure 12. Expected uncertainties of A⇣ (k0 = 45 Mpc�1), nS, and nrun using
measurements of µ, µ1, and µ2. We assumed 5 times the sensitivity of PIXIE
and A⇣ = 5⇥10�8 as reference value (other cases can be estimated by simple
rescaling). For the upper panel we also varied nrun as indicated, while in the
lower panel it was fixed to nrun = 0. The corresponding error in the particle
lifetime is �tX/tX ' 2�zX/zX.

though the absolute distance between line varies relative to the er-
ror bars they seem rather constant. To show this more explicitly,
from µ, µ1, and µ2 we computed we the expected 1�-errors on
A⇣(k0 = 45 Mpc�1), nS, and nrun around the maximum likelihood
value using the Fisher information matrix, Fi j = �µ�2 @piµ @p jµ +P

k �µ
�2
k @piµk@p jµk, with p ⌘ {A⇣ , nS, nrun}. Figure 12 shows the

corresponding forecasts assuming PIXIE-setting but with 5 times
its sensitivity. If only p ⌘ {A⇣ , nS} are estimate for fixed nrun, the
errors of A⇣ and nS are only a few percent. Also trying to constrain
nrun we see that the errors increase significantly, with an absolute
error on �nrun ' 0.07 rather independent of nS. If we change the
sensitivity by a factor f = �Ic/[10�26 W m�2 Hz�1 sr�1, all curved
can be rescaled by this factor to obtain the new estimate. Similarly,
if A⇣(k0 = 45 Mpc�1) di↵ers by f⇣ = A⇣/5 ⇥ 10�8, we have to
rescale the error estimates by f �1

⇣ . Overall, our analysis shows that
CMB spectral distortion measurement provide an unique probe of
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Figure 13. Detectability of µ, µ1, µ2, and µ3. For a given particle lifetime,
we compute the required value of ✏X = fX/zX for which a 1�-detection of
the corresponding variable is possible with PIXIE. The violet shaded area is
excluded by measurements of the primordial 3He/D abundance ratio (65%
c.l., adapted from Fig. 42 of Kawasaki et al. 2005).

the small-scale power spectrum, which can be utilized to directly
constraint inflationary models.

5.2.3 Decaying relic particles

The distortion signals for the three decaying particle scenarios pre-
sented in Table 1 will all be detectable with a PIXIE-like experi-
ment. More generally, Fig. 13 shows the 1�-detection limits for µ,
µ1, µ2, and µ3, as a function of the particle lifetime. CMB spec-
tral distortions are sensitive to decaying particles with ✏X as low as
' 10�2 eV for particle lifetimes 107 sec . tX . 1010 sec. To directly
constrain tX, at least a measurement of µ1 is needed. At PIXIE sen-
sitivity this means that the lifetime of particles with 2 ⇥ 109 sec .
tX . 6⇥1010 sec for ✏X & 0.1 eV and 3⇥108 sec . tX . 1012 sec for
✏X & 1 eV will be directly measurable. Most of this parameter space
is completely unconstrained [see upper limit from measurements of
the primordial 3He/D abundance ratio2 (from Fig. 42 of Kawasaki
et al. 2005) in Fig. 13]. Higher sensitivity will allow cutting deeper
into the parameter space and widen the range over which the parti-
cle lifetime can be directly constrained.

To illustrate this even further we can again look at the µ �
⇢k-parameter space covered by decaying particles. The projections
into the µ � ⇢1 and ⇢1 � ⇢2-plane are shown in Fig. 14 for ✏X =
1 eV and PIXIE settings. Varying ✏X moves the µ�⇢1 trajectory left
or right, as indicated. Furthermore, all error bars of ⇢k have to be
rescales by f = [✏X/1 eV]�1 under this transformation. Measuring
µ and ⇢1 is in principle su�cient for determination of ✏X and the
particle lifetime, tX = [4.9⇥109/(1+zX)]2 sec, with most sensitivity
around zX ' 5 ⇥ 104 � 105 or tX ' 2.4 ⇥ 109 � 9.6 ⇥ 109 sec for
the shown scenario. For short lifetime, the signal is very close to a

2 In the particle physics community the abundance yield, YX = NX/S ,
and deposited particle energy, Evis [GeV], are commonly used. Here NX
is the particle number density at t ⌧ tX and S = 4

3
⇢

kT ' 7 N� '
2.9 ⇥ 103 (1 + z)3 cm�3 denotes the total entropy density. We thus find
✏X ⌘ (Evis YX) 109S/[NH (1 + zX)] ' 1.5 ⇥ 1019(Evis YX)/(1 + zX).

c� 0000 RAS, MNRAS 000, 000–000

Distortions could shed light on decaying (DM) particles!

JC & Jeong, 2013

Kawasaki et al., 2005

Estimated 1σ detection 
limits for PIXIE
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Figure 12. Expected uncertainties of A⇣ (k0 = 45 Mpc�1), nS, and nrun using
measurements of µ, µ1, and µ2. We assumed 5 times the sensitivity of PIXIE
and A⇣ = 5⇥10�8 as reference value (other cases can be estimated by simple
rescaling). For the upper panel we also varied nrun as indicated, while in the
lower panel it was fixed to nrun = 0. The corresponding error in the particle
lifetime is �tX/tX ' 2�zX/zX.

though the absolute distance between line varies relative to the er-
ror bars they seem rather constant. To show this more explicitly,
from µ, µ1, and µ2 we computed we the expected 1�-errors on
A⇣(k0 = 45 Mpc�1), nS, and nrun around the maximum likelihood
value using the Fisher information matrix, Fi j = �µ�2 @piµ @p jµ +P

k �µ
�2
k @piµk@p jµk, with p ⌘ {A⇣ , nS, nrun}. Figure 12 shows the

corresponding forecasts assuming PIXIE-setting but with 5 times
its sensitivity. If only p ⌘ {A⇣ , nS} are estimate for fixed nrun, the
errors of A⇣ and nS are only a few percent. Also trying to constrain
nrun we see that the errors increase significantly, with an absolute
error on �nrun ' 0.07 rather independent of nS. If we change the
sensitivity by a factor f = �Ic/[10�26 W m�2 Hz�1 sr�1, all curved
can be rescaled by this factor to obtain the new estimate. Similarly,
if A⇣(k0 = 45 Mpc�1) di↵ers by f⇣ = A⇣/5 ⇥ 10�8, we have to
rescale the error estimates by f �1

⇣ . Overall, our analysis shows that
CMB spectral distortion measurement provide an unique probe of
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Figure 13. Detectability of µ, µ1, µ2, and µ3. For a given particle lifetime,
we compute the required value of ✏X = fX/zX for which a 1�-detection of
the corresponding variable is possible with PIXIE. The violet shaded area is
excluded by measurements of the primordial 3He/D abundance ratio (65%
c.l., adapted from Fig. 42 of Kawasaki et al. 2005).

the small-scale power spectrum, which can be utilized to directly
constraint inflationary models.

5.2.3 Decaying relic particles

The distortion signals for the three decaying particle scenarios pre-
sented in Table 1 will all be detectable with a PIXIE-like experi-
ment. More generally, Fig. 13 shows the 1�-detection limits for µ,
µ1, µ2, and µ3, as a function of the particle lifetime. CMB spec-
tral distortions are sensitive to decaying particles with ✏X as low as
' 10�2 eV for particle lifetimes 107 sec . tX . 1010 sec. To directly
constrain tX, at least a measurement of µ1 is needed. At PIXIE sen-
sitivity this means that the lifetime of particles with 2 ⇥ 109 sec .
tX . 6⇥1010 sec for ✏X & 0.1 eV and 3⇥108 sec . tX . 1012 sec for
✏X & 1 eV will be directly measurable. Most of this parameter space
is completely unconstrained [see upper limit from measurements of
the primordial 3He/D abundance ratio2 (from Fig. 42 of Kawasaki
et al. 2005) in Fig. 13]. Higher sensitivity will allow cutting deeper
into the parameter space and widen the range over which the parti-
cle lifetime can be directly constrained.

To illustrate this even further we can again look at the µ �
⇢k-parameter space covered by decaying particles. The projections
into the µ � ⇢1 and ⇢1 � ⇢2-plane are shown in Fig. 14 for ✏X =
1 eV and PIXIE settings. Varying ✏X moves the µ�⇢1 trajectory left
or right, as indicated. Furthermore, all error bars of ⇢k have to be
rescales by f = [✏X/1 eV]�1 under this transformation. Measuring
µ and ⇢1 is in principle su�cient for determination of ✏X and the
particle lifetime, tX = [4.9⇥109/(1+zX)]2 sec, with most sensitivity
around zX ' 5 ⇥ 104 � 105 or tX ' 2.4 ⇥ 109 � 9.6 ⇥ 109 sec for
the shown scenario. For short lifetime, the signal is very close to a

2 In the particle physics community the abundance yield, YX = NX/S ,
and deposited particle energy, Evis [GeV], are commonly used. Here NX
is the particle number density at t ⌧ tX and S = 4

3
⇢

kT ' 7 N� '
2.9 ⇥ 103 (1 + z)3 cm�3 denotes the total entropy density. We thus find
✏X ⌘ (Evis YX) 109S/[NH (1 + zX)] ' 1.5 ⇥ 1019(Evis YX)/(1 + zX).
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rescaling). For the upper panel we also varied nrun as indicated, while in the
lower panel it was fixed to nrun = 0. The corresponding error in the particle
lifetime is �tX/tX ' 2�zX/zX.

though the absolute distance between line varies relative to the er-
ror bars they seem rather constant. To show this more explicitly,
from µ, µ1, and µ2 we computed we the expected 1�-errors on
A⇣(k0 = 45 Mpc�1), nS, and nrun around the maximum likelihood
value using the Fisher information matrix, Fi j = �µ�2 @piµ @p jµ +P
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k @piµk@p jµk, with p ⌘ {A⇣ , nS, nrun}. Figure 12 shows the

corresponding forecasts assuming PIXIE-setting but with 5 times
its sensitivity. If only p ⌘ {A⇣ , nS} are estimate for fixed nrun, the
errors of A⇣ and nS are only a few percent. Also trying to constrain
nrun we see that the errors increase significantly, with an absolute
error on �nrun ' 0.07 rather independent of nS. If we change the
sensitivity by a factor f = �Ic/[10�26 W m�2 Hz�1 sr�1, all curved
can be rescaled by this factor to obtain the new estimate. Similarly,
if A⇣(k0 = 45 Mpc�1) di↵ers by f⇣ = A⇣/5 ⇥ 10�8, we have to
rescale the error estimates by f �1
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Figure 13. Detectability of µ, µ1, µ2, and µ3. For a given particle lifetime,
we compute the required value of ✏X = fX/zX for which a 1�-detection of
the corresponding variable is possible with PIXIE. The violet shaded area is
excluded by measurements of the primordial 3He/D abundance ratio (65%
c.l., adapted from Fig. 42 of Kawasaki et al. 2005).

the small-scale power spectrum, which can be utilized to directly
constraint inflationary models.

5.2.3 Decaying relic particles

The distortion signals for the three decaying particle scenarios pre-
sented in Table 1 will all be detectable with a PIXIE-like experi-
ment. More generally, Fig. 13 shows the 1�-detection limits for µ,
µ1, µ2, and µ3, as a function of the particle lifetime. CMB spec-
tral distortions are sensitive to decaying particles with ✏X as low as
' 10�2 eV for particle lifetimes 107 sec . tX . 1010 sec. To directly
constrain tX, at least a measurement of µ1 is needed. At PIXIE sen-
sitivity this means that the lifetime of particles with 2 ⇥ 109 sec .
tX . 6⇥1010 sec for ✏X & 0.1 eV and 3⇥108 sec . tX . 1012 sec for
✏X & 1 eV will be directly measurable. Most of this parameter space
is completely unconstrained [see upper limit from measurements of
the primordial 3He/D abundance ratio2 (from Fig. 42 of Kawasaki
et al. 2005) in Fig. 13]. Higher sensitivity will allow cutting deeper
into the parameter space and widen the range over which the parti-
cle lifetime can be directly constrained.

To illustrate this even further we can again look at the µ �
⇢k-parameter space covered by decaying particles. The projections
into the µ � ⇢1 and ⇢1 � ⇢2-plane are shown in Fig. 14 for ✏X =
1 eV and PIXIE settings. Varying ✏X moves the µ�⇢1 trajectory left
or right, as indicated. Furthermore, all error bars of ⇢k have to be
rescales by f = [✏X/1 eV]�1 under this transformation. Measuring
µ and ⇢1 is in principle su�cient for determination of ✏X and the
particle lifetime, tX = [4.9⇥109/(1+zX)]2 sec, with most sensitivity
around zX ' 5 ⇥ 104 � 105 or tX ' 2.4 ⇥ 109 � 9.6 ⇥ 109 sec for
the shown scenario. For short lifetime, the signal is very close to a

2 In the particle physics community the abundance yield, YX = NX/S ,
and deposited particle energy, Evis [GeV], are commonly used. Here NX
is the particle number density at t ⌧ tX and S = 4

3
⇢

kT ' 7 N� '
2.9 ⇥ 103 (1 + z)3 cm�3 denotes the total entropy density. We thus find
✏X ⌘ (Evis YX) 109S/[NH (1 + zX)] ' 1.5 ⇥ 1019(Evis YX)/(1 + zX).
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Figure 12. Expected uncertainties of A⇣ (k0 = 45 Mpc�1), nS, and nrun using
measurements of µ, µ1, and µ2. We assumed 5 times the sensitivity of PIXIE
and A⇣ = 5⇥10�8 as reference value (other cases can be estimated by simple
rescaling). For the upper panel we also varied nrun as indicated, while in the
lower panel it was fixed to nrun = 0. The corresponding error in the particle
lifetime is �tX/tX ' 2�zX/zX.

though the absolute distance between line varies relative to the er-
ror bars they seem rather constant. To show this more explicitly,
from µ, µ1, and µ2 we computed we the expected 1�-errors on
A⇣(k0 = 45 Mpc�1), nS, and nrun around the maximum likelihood
value using the Fisher information matrix, Fi j = �µ�2 @piµ @p jµ +P
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k @piµk@p jµk, with p ⌘ {A⇣ , nS, nrun}. Figure 12 shows the

corresponding forecasts assuming PIXIE-setting but with 5 times
its sensitivity. If only p ⌘ {A⇣ , nS} are estimate for fixed nrun, the
errors of A⇣ and nS are only a few percent. Also trying to constrain
nrun we see that the errors increase significantly, with an absolute
error on �nrun ' 0.07 rather independent of nS. If we change the
sensitivity by a factor f = �Ic/[10�26 W m�2 Hz�1 sr�1, all curved
can be rescaled by this factor to obtain the new estimate. Similarly,
if A⇣(k0 = 45 Mpc�1) di↵ers by f⇣ = A⇣/5 ⇥ 10�8, we have to
rescale the error estimates by f �1
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Figure 13. Detectability of µ, µ1, µ2, and µ3. For a given particle lifetime,
we compute the required value of ✏X = fX/zX for which a 1�-detection of
the corresponding variable is possible with PIXIE. The violet shaded area is
excluded by measurements of the primordial 3He/D abundance ratio (65%
c.l., adapted from Fig. 42 of Kawasaki et al. 2005).

the small-scale power spectrum, which can be utilized to directly
constraint inflationary models.

5.2.3 Decaying relic particles

The distortion signals for the three decaying particle scenarios pre-
sented in Table 1 will all be detectable with a PIXIE-like experi-
ment. More generally, Fig. 13 shows the 1�-detection limits for µ,
µ1, µ2, and µ3, as a function of the particle lifetime. CMB spec-
tral distortions are sensitive to decaying particles with ✏X as low as
' 10�2 eV for particle lifetimes 107 sec . tX . 1010 sec. To directly
constrain tX, at least a measurement of µ1 is needed. At PIXIE sen-
sitivity this means that the lifetime of particles with 2 ⇥ 109 sec .
tX . 6⇥1010 sec for ✏X & 0.1 eV and 3⇥108 sec . tX . 1012 sec for
✏X & 1 eV will be directly measurable. Most of this parameter space
is completely unconstrained [see upper limit from measurements of
the primordial 3He/D abundance ratio2 (from Fig. 42 of Kawasaki
et al. 2005) in Fig. 13]. Higher sensitivity will allow cutting deeper
into the parameter space and widen the range over which the parti-
cle lifetime can be directly constrained.

To illustrate this even further we can again look at the µ �
⇢k-parameter space covered by decaying particles. The projections
into the µ � ⇢1 and ⇢1 � ⇢2-plane are shown in Fig. 14 for ✏X =
1 eV and PIXIE settings. Varying ✏X moves the µ�⇢1 trajectory left
or right, as indicated. Furthermore, all error bars of ⇢k have to be
rescales by f = [✏X/1 eV]�1 under this transformation. Measuring
µ and ⇢1 is in principle su�cient for determination of ✏X and the
particle lifetime, tX = [4.9⇥109/(1+zX)]2 sec, with most sensitivity
around zX ' 5 ⇥ 104 � 105 or tX ' 2.4 ⇥ 109 � 9.6 ⇥ 109 sec for
the shown scenario. For short lifetime, the signal is very close to a

2 In the particle physics community the abundance yield, YX = NX/S ,
and deposited particle energy, Evis [GeV], are commonly used. Here NX
is the particle number density at t ⌧ tX and S = 4

3
⇢

kT ' 7 N� '
2.9 ⇥ 103 (1 + z)3 cm�3 denotes the total entropy density. We thus find
✏X ⌘ (Evis YX) 109S/[NH (1 + zX)] ' 1.5 ⇥ 1019(Evis YX)/(1 + zX).
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The dissipation of small-scale acoustic modes



Dissipation of small-scale acoustic modes



Dissipation of small-scale acoustic modes



Hu & White, 1997, ApJ

Silk-damping is 
equivalent to 
energy release!

Dissipation of small-scale acoustic modes



Energy release caused by dissipation process

‘Obvious’ dependencies:
• Amplitude of the small-scale power spectrum

• Shape of the small-scale power spectrum

• Dissipation scale → kD ~ (H0 Ωrel1/2 Ne,0)1/2 (1+z)3/2 at early times

not so ‘obvious’ dependencies:
• primordial non-Gaussianity in the ultra squeezed limit                          

(Pajer & Zaldarriaga, 2012; Ganc & Komatsu, 2012)

• Type of the perturbations (adiabatic ↔ isocurvature)                               
(Barrow & Coles, 1991; Hu et al., 1994; Dent et al, 2012, JC & Grin, 2012)

• Neutrinos (or any extra relativistic degree of freedom)



Energy release caused by dissipation process

‘Obvious’ dependencies:
• Amplitude of the small-scale power spectrum

• Shape of the small-scale power spectrum

• Dissipation scale → kD ~ (H0 Ωrel1/2 Ne,0)1/2 (1+z)3/2 at early times

not so ‘obvious’ dependencies:
• primordial non-Gaussianity in the ultra squeezed limit                          

(Pajer & Zaldarriaga, 2012; Ganc & Komatsu, 2012)

• Type of the perturbations (adiabatic ↔ isocurvature)                               
(Barrow & Coles, 1991; Hu et al., 1994; Dent et al, 2012, JC & Grin, 2012)

• Neutrinos (or any extra relativistic degree of freedom)

CMB Spectral distortions could add additional numbers beyond 
‘just’ the tensor-to-scalar ratio from B-modes!
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Constraints on the standard primordial power spectrum

JC, Khatri & Sunyaev, 2012

• For the standard power spectrum PIXIE 
might detect the µ-distortion caused by 
acoustic damping at ~ 1.5σ level

• For any given power spectrum very precise 
predictions are possible!

• The physics going into the computation 
are well understood

• y-distortion will be harder to measure, 
since many other astrophysical processes 
cause y-distortions at low redshift

• PIXIE could independently rule out a scale-
invariant power spectrum at ~ 2.5σ level



Planck+WP+highL

PRISM (Imager)

PRISM (Imager+Spec)

Fiducial model

k0 = 0.05Mpc

�1

A⇣ = 2.2⇥ 10

�9

nS = 0.96

nrun = 0

JC & Jeong, 2013



But this is not all that one could look at !!!



Distortions provide additional power spectrum constraints!

• Amplitude of power spectrum rather uncertain at k > 3 Mpc-1

• improved limits at smaller scales can rule out many inflationary models

Bringmann, Scott & Akrami, 2011, ArXiv:1110.2484 

CMB et al.

rather model dependent

e.g., JC, Khatri & Sunyaev, 2012; JC, Erickcek & Ben-Dayan, 2012; JC & Jeong, 2013



Distortions provide additional power spectrum constraints!

• Amplitude of power spectrum rather uncertain at k > 3 Mpc-1

• improved limits at smaller scales can rule out many inflationary models

Bringmann, Scott & Akrami, 2011, ArXiv:1110.2484 

CMB et al.

rather model dependent

CMB distortions

• CMB spectral distortions would extend our lever arm to k ~ 104 Mpc-1

• very complementary piece of information about early-universe physics

             

e.g., JC, Khatri & Sunyaev, 2012; JC, Erickcek & Ben-Dayan, 2012; JC & Jeong, 2013

Probe extra 
≃10 e-folds 
of inflation!



Jeong et al., 2014

Emami et al, 2015

• Ultra-squeezed limit non-Gaussianity (Pajer & Zaldarriaga, 2012; Ganc & Komatsu, 2012)



Text

Probing the small-scale power spectrum

JC, 2013, Arxiv:1304.6120

8 Chluba

type experiment is unable to constrain the lifetime of the particle.
The degeneracy is already broken at twice the sensitivity of PIXIE,
yielding ' 29% error on fX/zX and ' 17% error on zX. This fur-
ther improves to ' 14% uncertainty in fX/zX and a ' 9% error on
zX for four times the sensitivity of PIXIE. This energy-release sce-
nario corresponds to �⇢�/⇢� ' 6.4 ⇥ 10�7, so that the distortion is
comparable in amplitude to the y-signal from late times. Assuming
that less energy is liberated by the decaying particle increases the
errors (and hence the degeneracy), and conversely, for larger decay
energy the errors diminish. Overall, a PIXIE-type experiment will
provide a pretty good probe for long-lived particles with lifetimes
tX ' 6 ⇥ 108 sec � 1010 sec and fX/zX & 1 eV.

5 DISSIPATION OF SMALL-SCALE ACOUSTIC MODES

The prospect of accurate measurements of the CMB spectrum with
a PIXIE-type experiment spurred renewed interests in how primor-
dial perturbations at small-scales dissipate their energy (Chluba
& Sunyaev 2012; Khatri et al. 2012a; Pajer & Zaldarriaga 2012;
Chluba et al. 2012b; Dent et al. 2012; Ganc & Komatsu 2012;
Chluba et al. 2012a; Powell 2012; Khatri & Sunyaev 2013; Chluba
& Grin 2013). It was shown, that this e↵ect can be used to place
tight limits on the amplitude and shape of the power spectrum at
scales far smaller than what is probed with measurements of the
CMB anisotropies, in principle allowing to discover the distortion
signatures from several classes of early universe models (e.g., see
Chluba et al. 2012a).

Taking a conservative perspective, one can assume that the
power spectrum of curvature perturbations is fully determined by
CMB anisotropy measurements at large scales, implying an ampli-
tude A⇣ ' 2.2 ⇥ 10�9, spectral index nS ' 0.96, and its running
nrun ' �0.02, at pivot scale k0 = 0.05 Mpc�1 (Planck Collaboration
et al. 2013b). This is a significant extrapolation from wavenumbers
k < 1 Mpc�1 all the way to k ' few⇥104 Mpc�1, and it was already
argued that for a PIXIE-type experiment the signal remains just
short of the 1�-detection limit (Chluba & Sunyaev 2012; Chluba
et al. 2012b). Improving the sensitivity a few times will allow a de-
tection of this signal, however, given that the errors on A⇣ and nS

from CMB data are now . 1%, to use spectral distortion alone as
a competitive probe, we find that a factor of ' 100 � 200 improve-
ment in the sensitivity is necessary. The strongest dependence of
the distortion signal is due to nrun (see Fig. 6 for illustration), since
small changes a↵ect the amplitude of the small-scale power spec-
trum and hence the associated spectral distortion by a large amount
(Khatri et al. 2012a; Chluba et al. 2012b), providing some ampli-
fication. Still, this application of spectral distortion measurements
remains futuristic, being comparable to the challenge of measuring
the cosmological hydrogen and helium recombination features with
high precision.

Both from the theoretical and observational point of view,
there is, however, no reason to believe that the small-scale power
spectrum is described by what is dictated by large-scale measure-
ments. There is no shortage of models that create, bumps, kinks,
steps, or oscillatory features in the primordial power spectrum (e.g.,
Salopek et al. 1989; Starobinskij 1992; Ivanov et al. 1994; Ran-
dall et al. 1996; Stewart 1997b; Copeland et al. 1998; Starobinsky
1998; Chung et al. 2000; Hunt & Sarkar 2007; Joy et al. 2008;
Barnaby et al. 2009; Barnaby 2010a; Ben-Dayan & Brustein 2010;
Achúcarro et al. 2011; Céspedes et al. 2012), and direct observa-
tional constraints (e.g., see Bringmann et al. 2012, for overview)
leave large room for excess power at k & few ⇥Mpc�1. The recent
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Figure 6. E↵ective heating rate (upper panel) and associated spectral dis-
tortion (lower panel) caused by the dissipation of small-scale acoustic
modes in di↵erent scenarios. For reference we show a y-distortion with
y = 2 ⇥ 10�9. For the standard power spectrum we used A⇣ = 2.2 ⇥ 10�9

and nS = 0.96 at pivot scale k0 = 0.05 Mpc�1. All but one case are without
running. The two scenarios with a step and bend of the primordial power
spectrum lead to rather similar distortions (modulo and overall factor), and
thus become hard to distinguish, although each model should be detectable
with a PIXIE-like experiment at more than 5�-confidence.

results obtained with Planck, e.g., from limits to non-Gaussianity
(Planck Collaboration et al. 2013e), certainly further reduce the
allowed parameter space for di↵erent models, but the existence
of large-scale anomalies (Planck Collaboration et al. 2013d), and
possible small-scale power spectrum features (Planck Collabora-
tion et al. 2013c) indicate that matters might be more complex. A
PIXIE-type experiment will therefore open up a new window to
early-universe models, no matter if a distortion is detected or not.

Given the range of possibilities, we shall pick a few illustrative
cases, representing simple classes of models. Detailed constraints
on specific models should be derived in a case-by-case basis, how-
ever, our selection provides some intuition for what could be possi-
ble in the future. We start with a simple step, �A⇣ > 0, in the ampli-
tude of the curvature power spectrum at di↵erent k & few⇥Mpc�1,
assuming a spectral index n0S. If n0S ' 1 and ks ' 3 Mpc�1, from
the practical point of view this case is degenerate with the spectral
distortion produced by s-wave annihilation [both have a heating

c� 0000 RAS, MNRAS 000, 000–000
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Dissipation scenario: 1σ-detection limits for PIXIE
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Figure 10. 1�-detection limits for µ, µ1, µ2, and µ3 caused by dissipation
of small-scale acoustic modes for PIXIE-like settings. We used the standard
parametrization for the power spectrum with amplitude, A⇣ , spectral index,
nS, and running nrun around pivot scale k0 = 45 Mpc�1. The heavy lines are
for nrun = 0, while all other lines are for nrun = {�0.1, 0.1} in each group.
For reference we marked the case nrun = 0.1.

tor & 200 over PIXIE will be necessary, making this application of
spectral distortions very futuristic (see also Chluba 2013a).

The exact shape and amplitude of the small-scale power spec-
trum are, however, unknown, and a large range of viable early-
universe models producing enhanced small-scale power exist (see,
Chluba et al. 2012a, for examples). Observationally, the amplitude
of the small-scale power spectrum is limited to A⇣ . 10�7 � 10�6 at
wavenumber 3 Mpc�1 . k . few ⇥ 104 Mpc�1 (the range that is of
most interest for CMB distortions) using ultra-compact minihalos
(Bringmann et al. 2012; Scott et al. 2012). Although not absolutely
model-independent, this leaves lots of room for non-standard dissi-
pation scenarios.

Shifting the pivot scale to k0 = 45 Mpc�1 (corresponding to
heating around zdiss ' 4.5 ⇥ 105[k/103 Mpc�1]2/3 ' 5.7 ⇥ 104) and
using the standard parameterization for the power spectrum, we can
ask, how large A⇣(k0 = 45 Mpc�1) has to be to obtain a 1�-detection
of µ, µ1, µ2, and µ3, respectively. The results of this exercise are
shown in Fig. 10 for PIXIE settings. Around nS ' 1, detections of
µ are possible for A⇣ & 10�9, while A⇣ & 6 ⇥ 10�9 is necessary
to also have a detection of µ1. In this case two of the three model-
parameters can in principle be constrained independently. To also
access information from µ2 and µ3 one furthermore needs A⇣ &
10�7. In this case we could expect to break the degeneracy between
all three parameters.

These statements can be phrased in another way. Assuming
A⇣ ' 10�9, at least a factor of 5 improvement over PIXIE sensitivity
is needed to allow constraining combinations of two power spec-
trum parameters. To measure all p = {A⇣(k0 = 45 Mpc�1), nS, nrun}
independently an overall factor of ' 200 improvement over PIXIE
sensitivity is required, although in this (very conservative) case the
corresponding constraints would still not be competitive with those
reached at large scales using CMB anisotropy measurements.

We can also ask the question of how well the power spec-
trum parameters can be constrained for di↵erent cases. If only µ is
available, then the corresponding constraints on small-scale power
spectrum parameters remain rather weak, but could still be used to
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Figure 11. Parameter range of µ, µ1, and µ2 for dissipation scenarios. We
assumed PIXIE settings with 5 times its sensitivity, and power spectrum
amplitude A⇣ (k0 = 45 Mpc�1) = 5⇥10�8 (i.e. A ⌘ A⇣/5⇥10�8). The heavy
solid black lines are for nrun = 0, while the thin solid brown lines indicate
nS = const. The other light lines are for nrun = {�0.2,�0.1, 0.1, 0.2}. The
open symbols mark nS in steps �nS = 0.1. The blue symbols with error
bars (tiny in the upper panel) are for nS = {0.5, 1, 1.5, 1.8} and nrun = 0 and
illustrate how the error scales in di↵erent regions of the parameter space.
Measurements in the µ � ⇢1 plane can be used to fix the overall amplitude
of the small-scale power spectrum for a given pair nS and nrun, but no in-
dependent constraint on nS and nrun can be deduced. The constraints on ⇢1
and ⇢2 allow to partially break the remaining degeneracy.

limit the parameters space (e.g., Chluba et al. 2012b,a). If µ and µ1

can be accessed, we can limit the overall amplitude of the power
spectrum for given pairs of nS and nrun. This can be seen from the
upper panel of Fig. 11, where we illustrate the possible parameter
space of µ, ⇢1 / µ1/µ and ⇢2 / µ2/µ in some range of nS and
nrun. For the considered sensitivity, the errors on µ and ⇢1 are very
small, but since the overall amplitude, A⇣ , can be adjusted without
a↵ecting ⇢1, the measurement is not independent of nS and nrun.

If in addition µ2 can be constrained the degeneracy can be bro-
ken. As Fig. 11 (lower panel) indicates, the relative dependence
on nrun seems rather similar in all parts of parameter space: al-
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Figure 5. Resulting µ-parameter from heating due to tensor perturba-
tions. The two groups are for {AT , k0} = {2.4 ⇥ 10�10, 0.002 Mpc�1} and
{2.2 ⇥ 10�10, 0.05 Mpc�1}. We used Eq. (18) to compute the heating rate,
but for the red dashed line we only included modes with k  2⇥104 Mpc�1.
The stars show the result obtained with approximation Eq. (19). For the sim-
plest parametrizations of the primordial tensor power spectrum, the shaded
region is ruled out by BBN/CMB constraints (Smith et al. 2006; Boyle &
Buonanno 2008).

accounts for the e�ciency of thermalization at early times. Correc-
tions to the shape of the spectral distortion caused by dissipation of
tensor perturbations in the µ � y transition era (104 . z . 3 ⇥ 105)
can be included using the Green’s function method of the CosmoTh-
erm

6 software package (Chluba & Sunyaev 2012; Chluba 2013b),
but for the purpose of this work, Eq. (24) is su�cient.

For k0 = 0.05 Mpc, with the approximation Eq. (19) for the
tensor heating rate, we find µ ⇡ {7.3 ⇥ 10�5, 7.8 ⇥ 10�3, 5.8} AT for
nT = {0, 0.5, 1}, respectively. Thus with AT ' 0.1A⇣ ' 2.2 ⇥ 10�10

we have a distortion µ ⇡ {1.6 ⇥ 10�14, 1.7 ⇥ 10�12, 1.3 ⇥ 10�9}. For
nT . 1, this agrees to within ' 10% � 30% with our more detailed
calculation (see Fig. 5). Generally, our numerical results show that
for nearly scale invariant tensor power spectra, the µ-distortion re-
mains six orders of magnitudes smaller than for the dissipation of
adiabatic modes, which for standard curvature power spectrum with
A⇣ = 2.2 ⇥ 10�9 at pivot scale k0 = 0.05 Mpc and nS = 0.96 gives
µ⇣ ' 1.4⇥10�8 (Chluba et al. 2012b). The adiabatic signal is just at
the detection limit of PIXIE (Kogut et al. 2011), showing that a de-
tection of the tensor contribution is very futuristic. For blue power
spectra, the distortion can become comparable to the signal caused
by adiabatic modes. However, in this case constraints on tensors
from CMB and big bang nucleosynthesis (BBN) become impor-
tant (Smith et al. 2006), limiting nT < 0.36 for r ' 0.1 (Boyle &
Buonanno 2008). Overall, the distortion signal from tensors is thus
expected to be much smaller than for adiabatic modes (see Fig. 5).

5.1 Comparing with Ota et al.

Our conclusions from the previous section are in broad agree-
ment with those of Ota et al. (2014). To compare more directly,
we change the power spectrum parameters to k0 = 0.002 Mpc
and AT = 2.4 ⇥ 10�10 and introduce a hard small-scale cuto↵

6 Available at www.Chluba.de/CosmoTherm
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Figure 6. Di↵erential contribution to the µ-distortion from di↵erent scales.
Transfer e↵ects introduce a cuto↵ at very small scales. The dotted vertical
line indicates the position of the cuto↵ used by Ota et al. (2014), while the
dashed-dotted lines are the data taken from their Fig. 2 (and divided by 2 to
convert to r = 0.1). See Sect. 5.1 text for more detailed explanation.

at kcut = 2 ⇥ 104 Mpc�1. Numerically integrating Eq. (13) with
Eq. (24), we find µ ⇡ {1.8 ⇥ 10�14, 6.0 ⇥ 10�9} for nT = {0, 1}.
This is about 10% � 20% smaller than the values reported in their
paper, µOta ⇡ {2.2⇥10�14, 7⇥10�9} for r = 0.1. A part of this di↵er-
ence can be explained by adding the other terms for ` = 2, Eq. (17),
which then gives µ ⇡ {1.9 ⇥ 10�14, 6.3 ⇥ 10�9}, but in particular for
nT = 0, the di↵erence remains comparable to ' 20%.

To understand the remaining di↵erence a little better, in Fig. 6
we show the digitized points (purple, dash-dotted) for dµ/ d ln k
taken from Fig. 2 of Ota et al. (2014) in comparison with our nu-
merical results. For the solid lines we used Eq. (13) for the heating
rate, while the dotted lines were computed with Eq. (18) for the
photon transfer function. For illustration, we also show the result
for dµ/ d ln k, when neglecting any photon transfer e↵ects (dashed
lines), which emphasizes the importance of free streaming e↵ects.
At the largest scales (k ' 0.3 Mpc�1), our curves for dµ/ d ln k prac-
tically coincide, although we find slightly larger contributions at
k . 0.1 Mpc�1. However, at smaller scales the curves of Ota et al.
(2014) are roughly 1.5 times larger than ours. Ota et al. (2014) used
the numerical output from the CLASS code (Lesgourgues 2011;
Blas et al. 2011; Tram & Lesgourgues 2013) to obtain the trans-
fer functions. The e↵ect of neutrino damping was only included
to CLASS recently (version 2.2; private communication, Lesgour-
gues). We find that after neglecting the damping e↵ect of neutrinos
our curves practically agree. Nevertheless, these corrections do not
change any of the main conclusions.

However, we do find that modes at k & 2 ⇥ 104 Mpc�1, which
were neglected by Ota et al. (2014), contribute significantly to
the heating, in particular for blue tensor power spectra. Includ-
ing all modes relevant at smaller scales, k0 = 0.002 Mpc and
AT = 2.4 ⇥ 10�10 we find µ ⇡ {1.9 ⇥ 10�14, 5.3 ⇥ 10�8}. Due to
the logarithmic dependence of the heating rate on the small-scale
cuto↵ [cf., Eq. (19)], for nT = 0 this did not make much of a di↵er-
ence. However, for nT ' 1, the distortion is underestimated roughly
7 times when neglecting modes at k > 2 ⇥ 104 Mpc�1 (see Fig. 5).
This becomes apparent when looking at the di↵erential contribu-
tion to µ as a function of scale (Fig. 6). For nT = 1, even scales
up to k ' 108 Mpc�1 contribute significantly to the value of µ,
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4.4 Energy release in the y-distortion era

For modes entering the horizon during the y-era (z . 104), we
have to include modifications related to the transition from radi-
ation to matter domination around z ' 3 ⇥ 103. Even if gener-
ally y-distortion constraints are harder to interpret because a very
large signal is produced at late times by structure formation and
reionization, it is still interesting to ask how large the tensor con-
tribution to the photon heating is. For modes that enter the hori-
zon in the matter-dominated era (k < keq ' 10�2 Mpc�1), the free
streaming damping from neutrinos can be neglected (they become
dynamically subdominant). In this case, the approximate solution
of the tensor transfer function reads (Watanabe & Komatsu 2006)
h0 ' 3 j2(k⌘)/⌘, with ⌘ = 2c/(Ha) / a�1/2 for matter domination.
The partial heating rate from these large-scale modes thus is

d(Q/⇢�)
dt

������
T,late
⇡ 4

45⌧̇
H2

4

Z keq

0

k2dk
2⇡2 PT (k)Th(k⌘)

Th(x) ⇡ 18 j2
2(x), (20)

where we scaled out the leading term / c2/(a⌘)2 ⇡ H2/4(/ a�3)
of the transfer function of h0. For nT = 0, we can evaluate the
k-space integral, Imat =

R keq

0
k2dk
2⇡2 PT (k)Th(k⌘), numerically. If we

instead use the transfer function for the radiation dominated era,
Th(x) ⇡ 2(k⌘)2 j2

1(k⌘), and compare the results, we find that typi-
cally Imat/Irad ' 0.36 � 0.9. For the heating rates shown in Fig. 4,
we assumed that the transfer function of h0 is given by the one for
radiation domination. Since in the radiation dominated era we have
c2/(a⌘)2 ⇡ H2(/ a�4), in Fig. 4 we overestimated the contributions
from modes with k < keq at least by a factor of Irad/(Imat/4) ' 5.
Since our numerical computations already show that the heating
in the y-era remains very small (see Fig. 4 around z ' 103 � 104;
although not shown, at z . 103 we find the heating rate to drop
sharply), we conclude that the late time heating always remains
small and thus can be neglected.

4.5 Alternative derivation for the tensor heating rate

To check the consistency of our derivations, we can obtain the ex-
pression for the e↵ective heating rate caused by tensors in another
way, starting from the gravitational wave energy density, ⇢gw(z).
The gravitational wave contribution to the energy density of the
Universe can be written as5 (e.g., Boyle & Steinhardt 2008; Watan-
abe & Komatsu 2006)

⇢gw(z) ⇡ ⇢tot

Z kcut

0

k2dk
2⇡2

PT (k)
12

Th(k⌘)
2

e���⌘, (21)

where kcut is a small scale cuto↵ that will be discussed below. The
tensor energy transfer function, Th(k⌘), is given by Eq. (12) and
⇢tot ⇡ ⇢�/(1 � R⌫) denotes the total energy density of the Universe.

It is clear that without any energy exchange between gravity
waves, neutrinos and photons one has ⇢gw / a�4 in the radiation
dominated era. The time derivative a�4d(a4⇢gw)/dt thus describes
the real exchange of energy between di↵erent fluid components:

d(a4⇢gw)
a4 dt

⇡ ⇢tot

Z kcut

0

k2dk
2⇡2

PT (k)
12

d
dt

 Th(k⌘)
2

e���⌘
!
. (22)

The remaining time derivative describes the heating of the neutrino
fluid, / Ṫh, and the heating of the photon fluid, proportional to

d
dt

e���⌘ = �32H2(1 � R⌫)
15⌧̇

e���⌘,

where we used the definition of �� given in Appendix D2. Thus,
the transfer of energy from tensors to the photon field is given by

d(a4⇢gw)
a4 dt

������
�

⇡ ⇢tot

Z kcut

0

k2dk
2⇡2

PT (k)
12

Th(k⌘)
2

d
dt

e���⌘

= �32H2⇢tot(1 � R⌫)
15⌧̇

Z kcut

0

k2dk
2⇡2

PT (k)
12

Th(k⌘)
2

e���⌘

= �4H2

45⌧̇
⇢�

Z kcut

0

k2dk
2⇡2 PT (k)Th(k⌘) e���⌘. (23)

Comparing this with Eq. (12), we can confirm our expression for
the e↵ective heating rate of photons by tensors. For the shear vis-
cosity from photons, transfer e↵ects were neglected, which lead
to a scale-dependent correction of the damping factor, �⇤�(k, ⌘), that
can be deduced from Eq. (13). Also, in principle additional changes
due to modifications of the e↵ective number of relativistic degrees
of freedom can be accounted for, which leads to modulation of the
tensor power relative to the ⇢gw / a�4 scaling, but the basic conclu-
sion does not change.

5 RESULTS FOR µ-DISTORTION FROM TENSORS

Given the heating rate from tensor perturbations, we can estimate
the amplitude of the µ-distortion using (e.g., Hu & Silk 1993)

µ ⇡ 1.4
Z 1

zµ,y

d(Q/⇢�)
dz

������
T

e�(z/zdc)5/2
dz, (24)

with zµ,y ' 5 ⇥ 104 and zdc ' 2 ⇥ 106. Here, J(z) = e�(z/zdc)5/2 gives
a simple approximation of the distortion visibility function, which

5 We obtained this expression from Eq. (23) of Boyle & Steinhardt (2008),
identifying the initial tensor power spectrum as �2

h(k) = k3PT (k)/(2⇡2) and
using k2 |h|2 = |h0 |2 with the transfer function Th to relate the initial power
to later time. We also included the tiny correction to the energy density
caused by dissipation of energy in the photon fluid, Appendix D2, which
energetically is not important for the tensor perturbations but it is the origin
of the heating for photons.

c� 0000 RAS, MNRAS 000, 000–000

• heating rate can be computed 
similar to adiabatic modes

• heating rate much smaller than for 
scalar perturbations

• roughly constant per dlnz for nT~0.5



The cosmological recombination radiation



Simple estimates for hydrogen recombination

Hydrogen recombination:

• per recombined hydrogen atom an energy 
 of ~ 13.6 eV in form of photons is released 

• at z ~ 1100  Δε/ε ~ 13.6 eV Nb / (Nγ 2.7kTr) ~ 10-9 -10-8  

 recombination occurs at redshifts z < 104

 At that time the thermalization process doesn’t work anymore!

 There should be some small spectral distortion due to  
additional Ly-α and 2s-1s photons! 

   (Zeldovich, Kurt & Sunyaev, 1968, ZhETF, 55, 278; Peebles, 1968, ApJ, 153, 1) 

 In 1975 Viktor Dubrovich emphasized the possibility to 
observe the recombinational lines from n > 3 and Δn << n!



First recombination computations completed in 1968!

Yakov Zeldovich

Vladimir Kurt 
(UV astronomer)

Rashid Sunyaev Jim Peebles

Moscow Princeton
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Another way to do CMB-based cosmology!
Direct probe of recombination physics!



Planck Collaboration, 2015, paper XX

Importance of recombination for inflation constraints

• Analysis uses refined recombination model (CosmoRec/HyRec)



Planck Collaboration, 2015, paper XX

Importance of recombination for inflation constraints

• Analysis uses refined recombination model (CosmoRec/HyRec)

Without improved recombination 
modules people would be talking 
about different inflation models!
(e.g., Shaw & JC, 2011)
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Dark matter annihilations / decays

JC, 2009, arXiv:0910.3663
•  Additional photons at all frequencies
•  Broadening of spectral features

•  Shifts in the positions
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What would we actually learn by doing such hard job?

Cosmological Recombination Spectrum opens a way to measure:
  the specific entropy of our universe (related to Ωbh2)

  the CMB monopole temperature T0

  the pre-stellar abundance of helium Yp

  If recombination occurs as we think it does, then the lines can be predicted   
with very high accuracy! 

  In principle allows us to directly check our understanding of the standard 
recombination physics



• CMB based cosmology 
alone

• Spectrum helps to break 
some of the parameter 
degeneracies

• Planning to provide a 
module that computes the 
recombination spectrum in 
a fast way

• detailed forecasts: which 
lines to measure; how 
important is the absolute 
amplitude; how accurately 
one should measure; best 
frequency resolution; 

computations prepared by Chad Fendt
in 2009 using detailed recombination code



What would we actually learn by doing such hard job?

Cosmological Recombination Spectrum opens a way to measure:
  the specific entropy of our universe (related to Ωbh2)

  the CMB monopole temperature T0

  the pre-stellar abundance of helium Yp

  If recombination occurs as we think it does, then the lines can be predicted   
with very high accuracy! 

  In principle allows us to directly check our understanding of the standard 
recombination physics

If something unexpected or non-standard happened:
  non-standard thermal histories should leave some measurable traces
  direct way to measure/reconstruct the recombination history!
  possibility to distinguish pre- and post-recombination y-type distortions
  sensitive to energy release during recombination
  variation of fundamental constants
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Balashev, Kholupenko, JC, Ivanchik & Varshalovich, 2015, in prep.
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