PIXIE: The Primordial Inflation Explorer

Al Kogut Goddard Space Flight Center

Primordial Inflation Explorer

Name	Role	Institution
A. Kogut	PI	GSFC
D. Fixsen	IS	UMD
D. Chuss	Co-I	GSFC
J. Dotson	Co-I	ARC
E. Dwek	Co-I	GSFC
M. Halpern	Co-I	UBC
G. Hinshaw	Co-I	UBC
S. Meyer	Co-I	U. Chicago
H. Moseley	Co-I	GSFC
M. Seiffert	Co-I	JPL
D. Spergel	Co-I	Princeton
E. Wollack	Co-I	GSFC

Spectral Distortions Provide New Window to Early Universe

The Ideal Instrument

The Ideal Instrument

Solution: Cryogenic Fourier Transform Spectrometer

PIXIE Instrument

Measured Fringes Sample Frequency Spectrum of Polarized Sky

Blackbody Calibrator Adds Spectrum Science

Calibrator stowed: Polarization only

Partially-assembled blackbody calibrator

Calibrator deployed: Spectral distortions!

$$P_{Lx} = \frac{1}{2} \int \left(E_{Cal,y}^2 + E_{Sky,x}^2 \right) + \left(E_{Sky,x}^2 - E_{Cal,y}^2 \right) \cos(z\omega/c) \, d\omega$$
$$P_{Ly} = \frac{1}{2} \int \left(E_{Cal,x}^2 + E_{Sky,y}^2 \right) + \left(E_{Sky,y}^2 - E_{Cal,x}^2 \right) \cos(z\omega/c) \, d\omega$$
$$[Calibrator-Sky]$$
Spectral Difference

Instrument and Observatory

Observatory

PIXIE Fourier Transform

Vary stroke length to apodize Fourier transform

FTS vs Foregrounds

Phase delay L sets channel width $\Delta v = c/2L = 15 \text{ GHz}$ Number of samples sets frequency range $v_i = 15, 30, 45, \dots (N/2)^* \Delta v$

Example: 24 samples during fringe sweep 12 channels 15 GHz to 180 GHz

But why stop there?

FTS vs Foregrounds

Phase delay L sets channel width $\Delta v = c/2L = 15 \text{ GHz}$ Number of samples sets frequency range $v_i = 15, 30, 45, \dots (N/2)^* \Delta v$

Sample more often: Get more frequency channels!

PIXIE "Foreground Machine"

PIXIE Implementation

Sensitivity: Background Limit the Easy Way

$$NEP_{photon}^{2} = \frac{2A\Omega}{c^{2}} \frac{(kT)^{5}}{h^{3}} \int \alpha \epsilon f \frac{x^{4}}{e^{x} - 1} \left(1 + \frac{\alpha \epsilon f}{e^{x} - 1}\right) dx$$
Photon noise ~ $(A\Omega)^{1/2}$
Big detector: Negligible phonon noise
 $\delta I_{\nu} = \frac{\delta P}{A\Omega \ \Delta \nu \ (\alpha \epsilon f)}$
Signal ~ $(A\Omega)$
Big detector: S/N improves as $(A\Omega)^{1/2}$

30x collecting area as Planck bolometers

PIXIE polarization-sensitive bolometer

PIXIE: A	4Ω = 4	cm ²	sr
----------	--------	-----------------	----

Calibrator

Deployed

Calibrator

Stowed

Units

		Dopioyou	otonou
Stokes I (per bin)	W m ⁻² sr ⁻¹ Hz ⁻¹	2.4 x 10 ⁻²²	
Stokes Q (per bin)	W m ⁻² sr ⁻¹ Hz ⁻¹	3.4 x 10 ⁻²²	0.5 x 10 ⁻²²
NET (CMB)	μK s ^{-1/2}	13.6	
NEQ (CMB)	μK s ^{-1/2}	19.2	5.6

Sensitivity 70 nK per 1° x 1° pixel

Parameter

PIXIE Detectors

Demonstrate multi-moded single-polarization photon-limited detectors

Microwave vs Audio Frequencies

Given spectrum S(v) and mirror position z, get interferogram I(z)

$$I(z) = \int_{-\infty}^{+\infty} S(v) \exp(2\pi i v z/c) \, dv$$

For single spectral line $S(v) = S_0 \delta(v-v_0)$ this becomes

 $I(z) = S_0 \exp(2\pi i v_0 z/c)$

If mirror moves at constant velocity b, then z = vtThe interferogram may then be written

 $I(z) = S_0 \exp(2\pi i v_0 v/c t)$

Defining $\beta = v/c$, the interferogram becomes

 $I(z) = S_0 \exp(2\pi i \beta v_0 t)$

which only has power at audio frequency βv_0

PIXIE Detectors

Demonstrate multi-moded single-polarization photon-limited detectors

Mirror Transport Mechanism

Engineering prototype

Demonstrated performance exceeds requirement by factor of ten

Translate ±2.54 mm at 0.5 Hz Optical phase delay ±1 cm Repeatable cryogenic position

Measured Beam Patterns

X (deg)

X (deg)

Kogut et al. 2015, JOS-A, arXiv:1503.04206

X (deg)

Instrument Cryogenics

Fully cryogenic instrument

Cryo-cooler to 4.5 K ADR to 2.6 K (instrument body) ADR to 0.1 K (detectors)

Tolerant thermal design

Robust design/performance margins Active thermal control for all optical surfaces Thermal "backbone" tolerant vs temperature excursions

INSTRUMENT THERMAL LIFT BUDGET

Cooler Stage	Stage Temp (K)	CBE Loads (mW)	Derated Capability (mW)	Contingency & Margin (%)	
Stirling (Upper Stage)	68	2362	4613	95%	
Stirling (Lower Stage)	17	132	278	111%	
Joule-Thomson	4.5	20	40	100%	
iADR	2.6	6	12	100%	
dADR	0.1	0.0014	0.03	2043%	

PIXIE INSTRUMENT HEAT FLOW

Cryogenics

IP

J-T Cold Head (4.5 K)

Thermal Lift Budget

Cooler Stage	Stag e Temp (K)	CBE Derated Loads Capability (mW) (mW)		Contingency & Margin	
Stirling (Upper)	68	2362	4613	95%	
Stirling (Lower)	17	132	278	111%	
Joule- Thomson	4.5	20	40	100%	
ADR	2.6	6	12	100%	
ADR	0.1	0.0014	0.03	2043%	

Sun Shield / Radiators

ADR (2.6 K)

ADR (0.1 K)

Cryo-Cooler Compressor (280 K)

- Multi-Stage Cryogenic Design
 - Passive Sun Shades (not shown)
 - 4.5 K Cryo-cooler
 - 2.6 K ADR
 - 0.1 K ADR

Blackbody Calibrator

Baseline Science Capability

PIXIE: Testing The Standard Model

* Specifically called out in Astro-2010 Decadal Survey

Spectral Distortions: Inflation

Silk damping of primordial perturbations

- Scalar index n_s and running dln n_s /dln k
- Physical scale ~1 kpc $(1M_{\odot})$

Daly 1991 Hu, Scott, & Silk 1994 Chluba, Erickcek, & Ben-Dayan 2012

Beyond the Power Spectrum

Sunyaev & Khatri 2013

Spectral Distortions: Dark Matter Annihilation

Wavenumber (cm⁻¹)

McDonald et al 2001 de Vega & Sanchez 2010

Spectral Distortions: Reionization

- ombine to get n and 1_e
 - $\bullet~{\rm T_e}$ probes ionizing spectrum
 - Distinguish Pop III, Pop II, AGN

Determine nature of first luminous objects

Spectrum: y distortion ~ Electron pressure $\int nkT_e$

• PIXIE limit $y < 5 \times 10^{-9}$

• Distortion must be present at y ~ 10^{-7}

Polarization: Optical depth ~ Electron density n

Same scattering for both signals

Spectral Distortions: Recombination

Baseline PIXIE mission: 20 detection of modified spectrum

Cosmic Infrared Background

Knox et al. 2001 Fixsen & Kashlinsky 2011

Spectral Line Emission

Extremely Rich Data Set!

Systematic Errors: What You Don't Know Can Hurt You

Calibrator

Sky

Detector

Thermal Physics: Blackbody spectrum depends on temperature, and *only* on temperature!

If the sky, calibrator, and instrument are all maintained at the same temperature, then the system can not generate fringes

Expand Signal To First Order About Ideal Case

 $\text{Maximum}\,\Delta T$

few mK

few mK

Maximum ∆T

Mirror Emissivity

x 0.01 tens of uK

Maximum ΔT	few mK	
Mirror Emissivity		x 0.01 📥 tens of uK
Left/Right Asymmet	ry	x 0.01 📥 few hundred nK
Swap hot vs cold		x 0.01 📫 few nK
Uncorrected Error		few nK (with blue-ish tinge)
Corrected Error		<< 1 nK

An Imperfect Instrument

MASA - GSEC - BATS

The temperature will not match the CMB *precisely* but good enough to limit the signals to a few mK

The instrument will not be *perfect* but good enough to reduce the emission to tens of uK

The symmetry will not be **exact** but good enough to reduce the imbalance to ~few 100 nK

The operational balance will not be *ideal* but good enough to reduce the bias to a few nK

The correction is limited by the *total data set* so it will be able to reduce the residual to <1 nK

Residual errors at sub-nK level after accounting for real-world imperfections

Systematic Error Control Multiple Instrumental Symmetries

Multiple Redundant Symmetries Allow Clean Instrument Signature

Symmetry and Systematic Error 20 Ways to Fix An Error

Symmetry	Mitigates
x vs y Polarization	Pointing
Left vs Right Detector	Particle Hits
A vs B Beam	Differential loss
Real vs Imaginary FFT	Detector heat capacity
Forward vs Backward FTS	Microphonics
Calibrator over A vs B beam	Calibration, Beam
Calibrator Hot vs Cold	Non-Linearities
Ascending vs Descending	Far sidelobes, calibration
Spin m=2	Electronics
Spin m=1, 3 to 12	Beam asymmetries

$P_{Lx} = \frac{1}{2} \int \left(E_{Ay}^2 + E_{Bx}^2 \right) + \left(E_{Bx}^2 - E_{Ay}^2 \right) \cos(z\omega/c) d\omega$
$P_{Ly} = \frac{1}{2} \int \left(E_{Ax}^2 + E_{By}^2 \right) + \left(E_{By}^2 - E_{Ax}^2 \right) \cos(z\omega/c) d\omega$
$P_{Rx} = \frac{1}{2} \int \left(E_{Ax}^2 + E_{By}^2 \right) + \left(E_{Ax}^2 - E_{By}^2 \right) \cos(z\omega/c) d\omega$
$P_{Ry} = \frac{1}{2} \int \left(E_{Ay}^2 + E_{Bx}^2 \right) + \left(E_{Ay}^2 - E_{Bx}^2 \right) \cos(z\omega/c) d\omega$

Add : Sky cancels, leaving systematics

Subtract : Instrument cancels, leaving sky

No assumptions about sky or instrument

Identify & model systematics at first order in sum	α ± δο
Residuals only appear at second order in difference	<u>δ</u> α ²

F #a -4	Leakage	PIXIE Mitigation				Residual		
Effect		FTS	Spin	Orbit	XCal	Symmetry	Preflight	(nK)
Cross-polar beam	E→B		\checkmark				\checkmark	1.5
Beam ellipticity	$\nabla^2 T \rightarrow TB$		\checkmark	\checkmark			\checkmark	2.7
Polarized sidelobes	ΔT→B		\checkmark	\checkmark			\checkmark	1.1
Instrumental polarization	ΔT→B			\checkmark			\checkmark	<0.1
Polarization angle	E→B			\checkmark			\checkmark	0.7
Beam offset	ΔT→B		\checkmark	\checkmark			\checkmark	0.7
Relative gain	ΔT→B							<0.1
Gain drift	T→B							<0.1
Spin-synchronous emission	ΔT→B							<0.1
Spin-synchronous drift	T→B						\checkmark	<0.1

A beam B beam Left Detector Right Detector

A Non-Cosmological Problem

Will a future Congress fund a \$1B Inflation Probe? Low-cost alternative within existing NASA budget line

NASA Explorer Program

Small PI-led missions

- 22 full missions proposed Feb 2011
- \$200M Cost Cap + launch vehicle

PIXIE not selected; urged to re-propose

- Category I Science rating
- Broad recognition of science appeal

Re-propose to next MIDEX AO (2017)

- Technology is mature
- Launch early next decade

"PIXIE's spectral measurements alone justify the program" -- NASA review panel

Some Questions ...

- Optimum channel width? Noise penalty ~ (Δv)^{-1/2} On-orbit ops can only increase Δv
- Optimum noise floor? Improve sensitivity at cost of complexity More detectors, greater etendu, ...
- Optimum angular resolution?
 Fixed etendu, so Ω ~ 1 / Area
 Foreground structure within beam
- Additional science? Reionization / early universe Spectral/spatial maps of CIB Intensity mapping of far-IR lines ISM / dust physics

