BOSS & eBOSS (on behalf of many SDSS colleagues)

Bob Nichol (ICG Portsmouth)

Building on the legacy of SDSS

Still a highly competitive wide-field spectroscopic capability

SDSS-III

- **BOSS**
- SEGUE-II
- APOGEE
- MARVELS

Funded for operation from 2008 to 2014

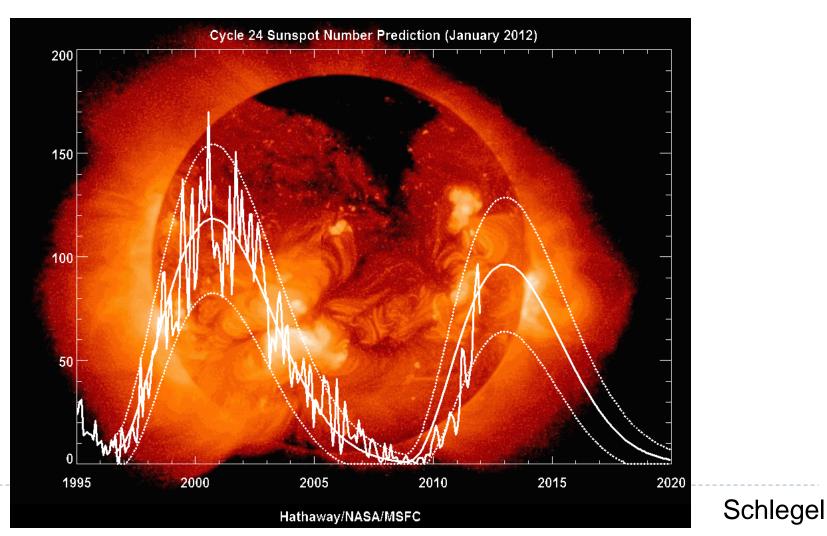
BOSS in a nutshell

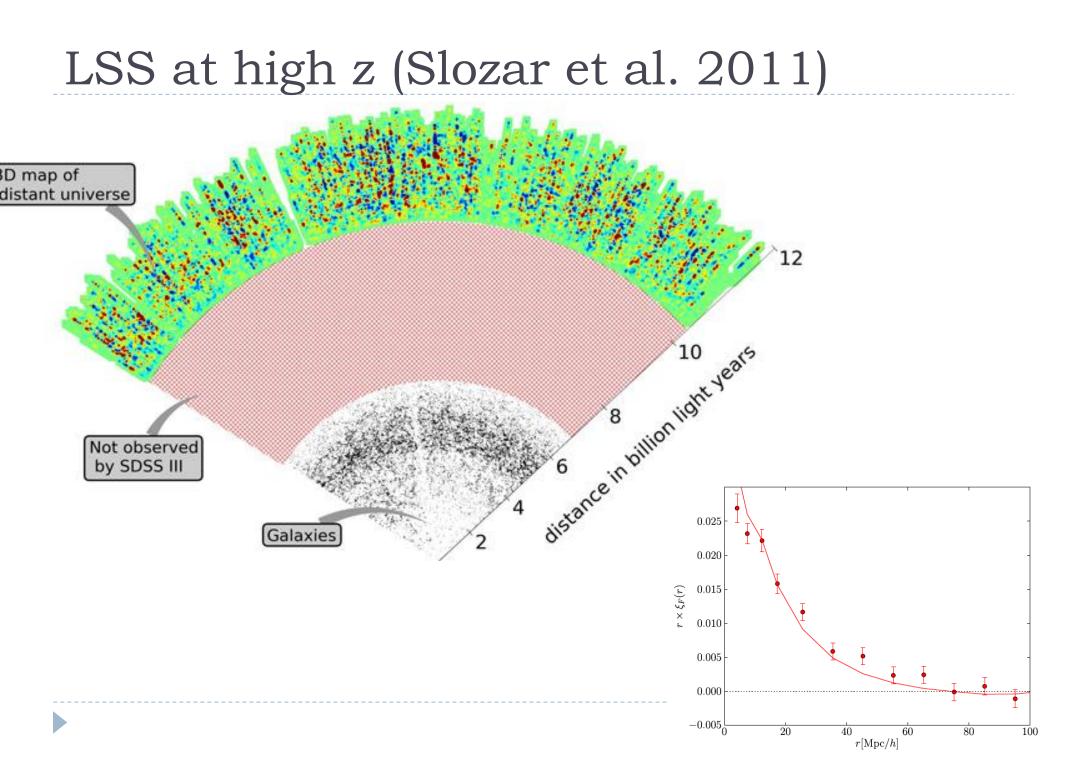
8,000 deg² footprint in Spring 3,000 deg² footprint in Fall

(Eisenstein et al. 2011)

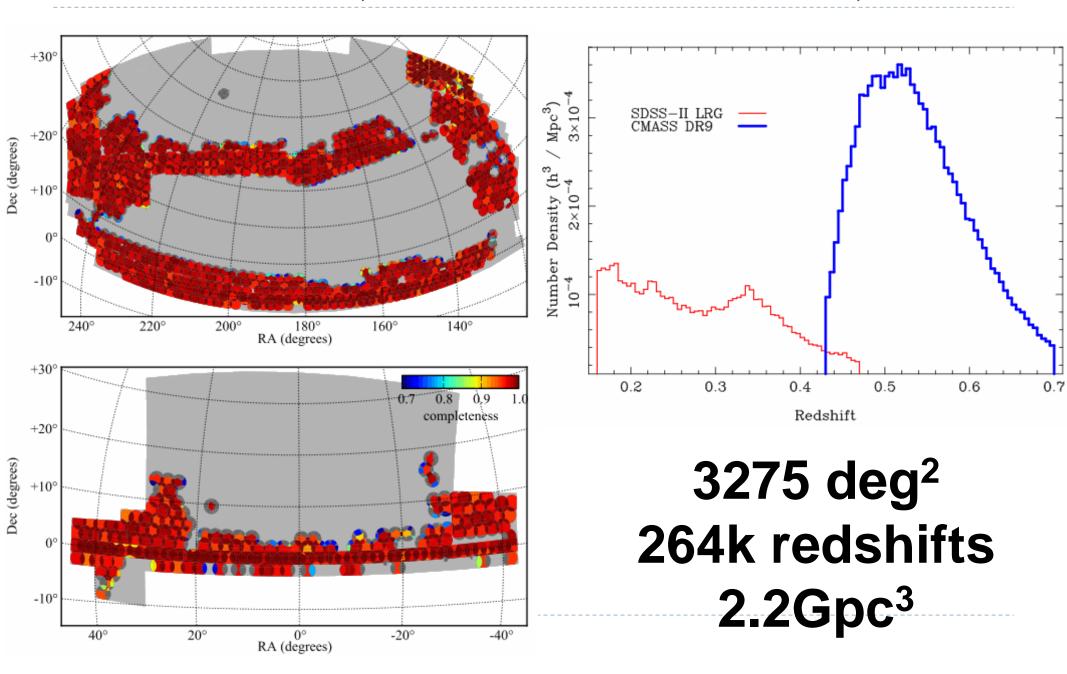
Upgraded spectrographs (with better throughput)
 1000x 2-arcsec fibers in cartridges
 Increase wavelength range to 3600-10,000A (R=1500-

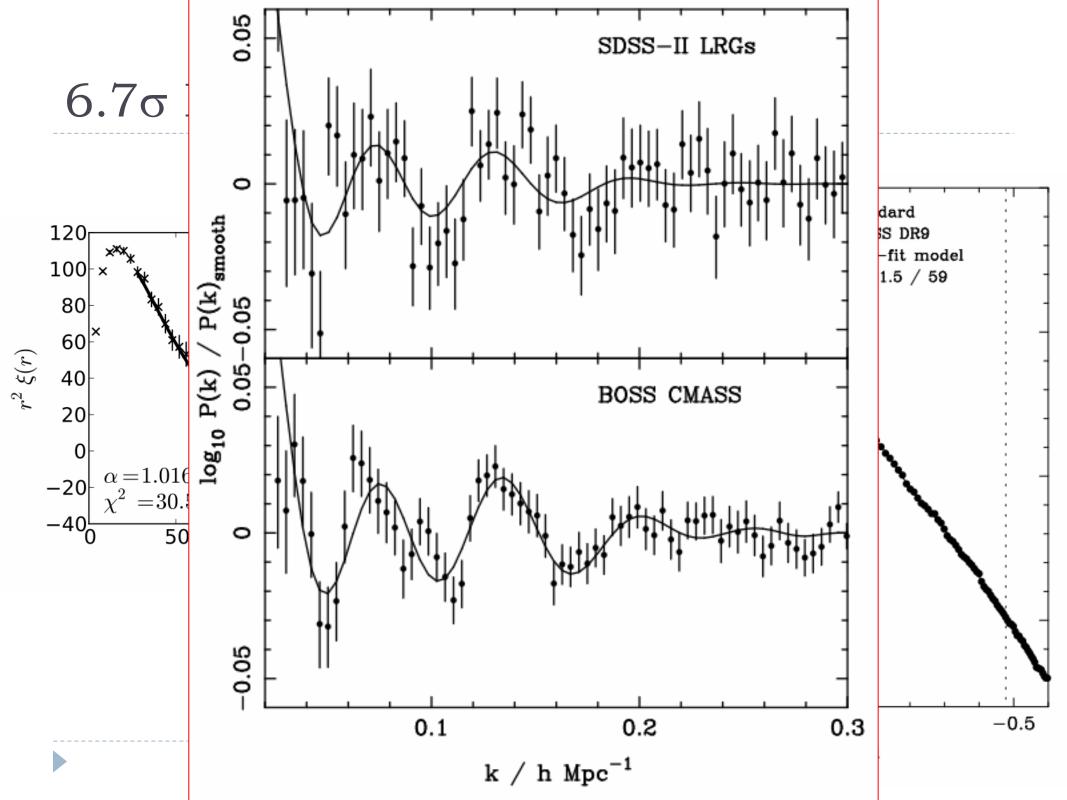
2600)


Finished ~3,000 deg² southern imaging in Fall 2008.
Released as part of DR8, published in ApJS (2011).

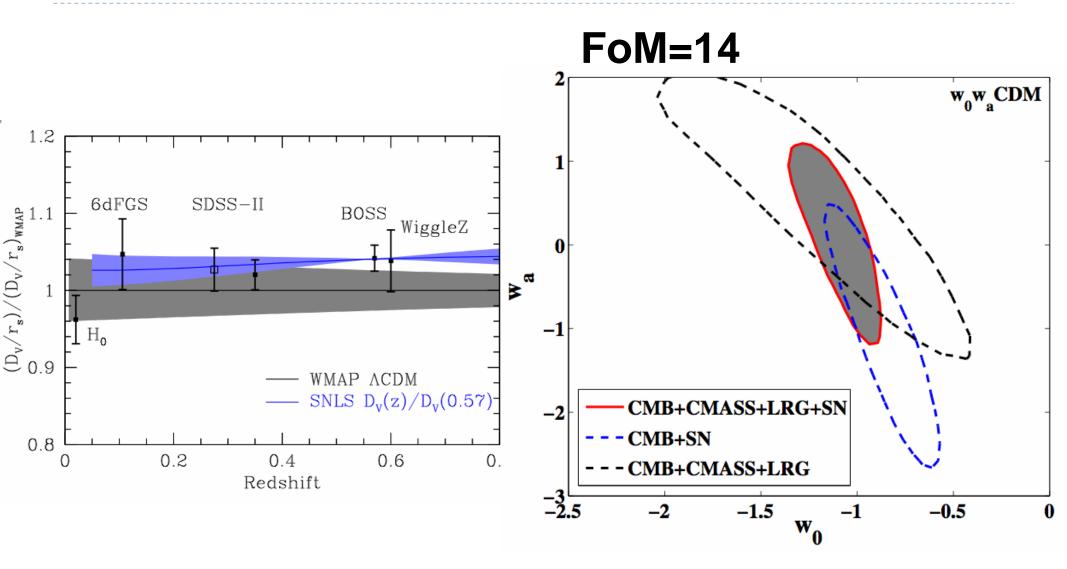

Currently doing only spectroscopy
1.5 million galaxies, i<19.9, z<0.8, over 10,000 deg²
150,000 QSOs, g<22, 2.3<z<3, over 8,000 deg²

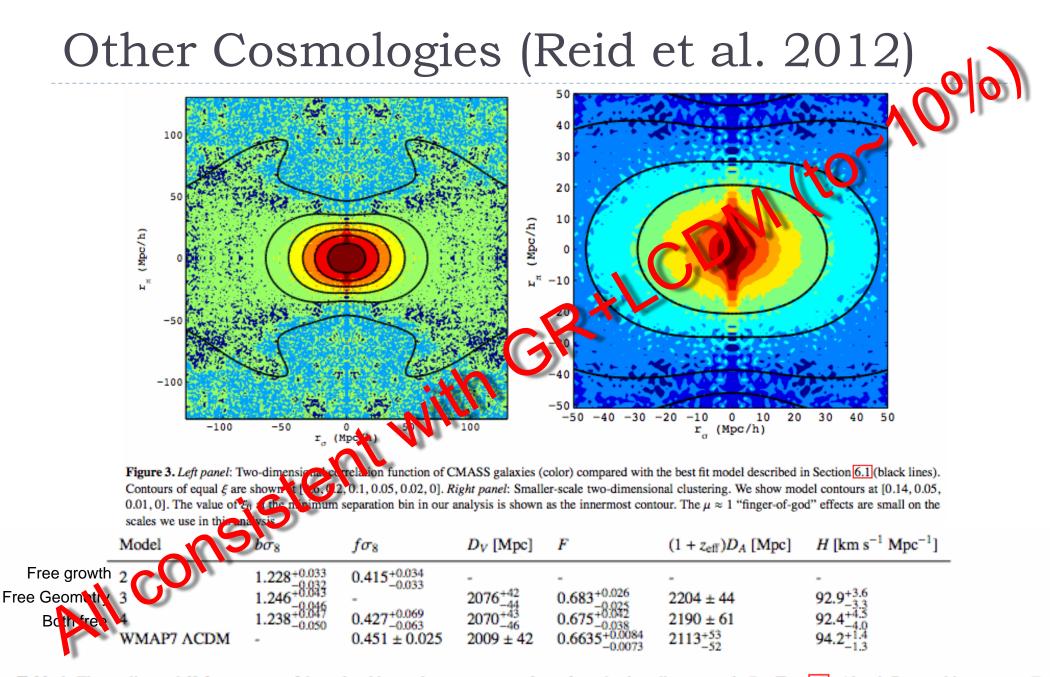
Blanton


BOSS is over half done!


Over 1000 plates done, each with 1000 targets – million spectra! Only 27% of time lost to weather and problems Lower sky brightness

BOSS 2012 (Anderson et al. 2012)





BAO Hubble Diagram 3000 BOSS 2000 WiggleZ $D_V(z)(r_{s,fid}/r_s)$ (Mpc) SDSS-II $1000 \\ 900$ 800 700 600 500 w=-1.08 +/- 0.08 (wCDM) 6dFGS 400 WMAP ACDM 0.2 0.4 0.6 0.8 0 Redshift

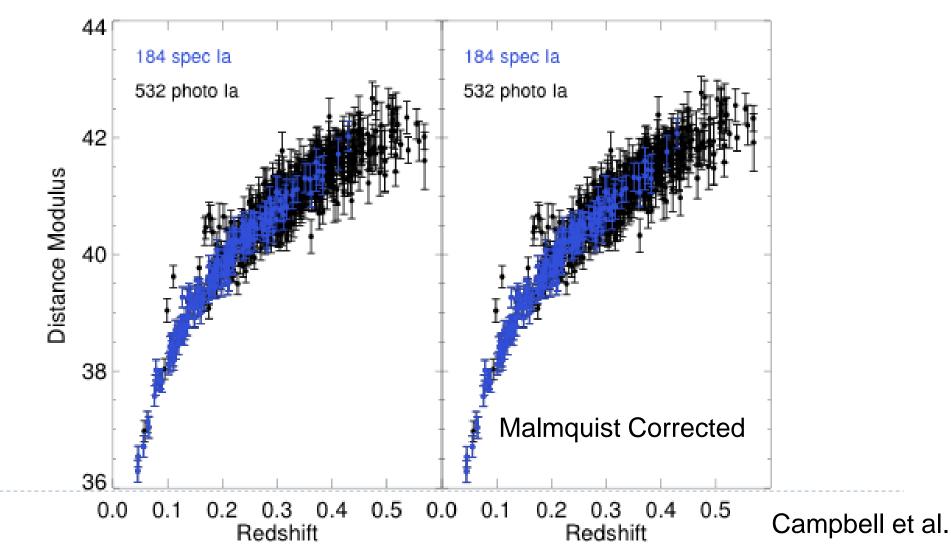
Still things to learn

D

Table 1. The median and 68.3 per cent confidence level intervals on parameters $b\sigma_8$, $f\sigma_8$, absolute distance scale D_V (Eqn. 15), Alcock-Paczynski parameter F (Eqn. 16), as well as derived parameters, comoving angular diameter distance $((1 + z_{\text{eff}})D_A)$ and expansion rate (H). To obtain these constraints, we marginalize over σ_{FoG}^2 and power spectrum shape parameters $\vec{p}_8 = \{\Omega_b h^2, \Omega_c h^2, n_s\}$ for Models 2-4, as described in Section 5.2. We interpret our measurements at the effective redshift of our galaxy sample, $z_{\text{eff}} = 0.57$.

 $w(z)=w_0+w_a(1-a).$

TABLE 5							
BOSS	PARAMETER	Constraint	FORECECASTS				


Expt.	h	Ω_K	w_0	w_p	w_a	FoM
Planck+Stage II	0.019	0.0031	0.115	0.036	0.524	53.4
BOSS LRG BAO	0.009	0.0027	0.090	0.031	0.365	87.4
BOSS LRG BAO+LyaF BAO	0.009	0.0019	0.083	0.030	0.320	102
BOSS LRG broad-band+LyaFBAO	0.007	0.0018	0.074	0.019	0.284	188

NOTE. — All constraints assume Planck and the DETF forecasts for "Stage II" experiments. BAO constraints include only the acoustic scale information and are therefore conservative; the final line shows the BOSS forecast that also incorporates broad-band galaxy power information.

 d_A of 1.0% at z = 0.35 & 0.6, 4.5% at z = 2.5, H(z) to 1.8%, 1.7% and 2.6% respectively

Ancillary Program!

- High impact for relatively small fiber allocations
- Lots of community support

"Stage VI" experiments

We have a decade of surveys:

- eBOSS (2014)
- DESpec (2018)
- BigBOSS (2018)
- WEAVE (2018)
- SuMIRE (2018)
- Euclid (2019)
- LSST (2020)
- WFIRST (2022)
- SKA (2023)

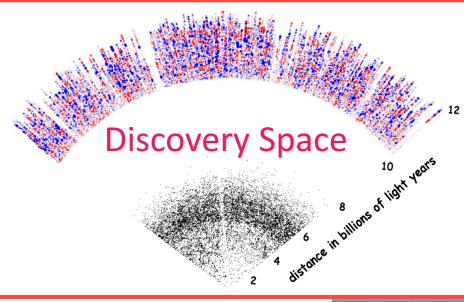
"Stage VI" experiments

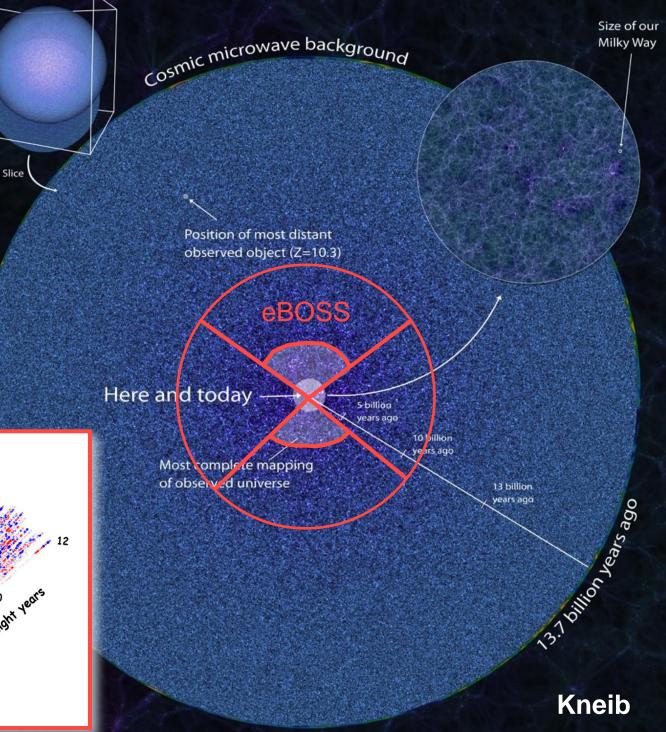
We have a decade of surveys:

- ▶ eBOSS (2014) 4 years to exploit SDSS wide-field!
- DESpec (2018)
- BigBOSS (2018)
- ▶ WEAVE (2018)
- SuMIRE (2018)
- Euclid (2019)
- LSST (2020)
- WFIRST (2022)
- SKA (2023)

e-BOSS: Extending BOSS The novel Sloan legacy cosmological survey

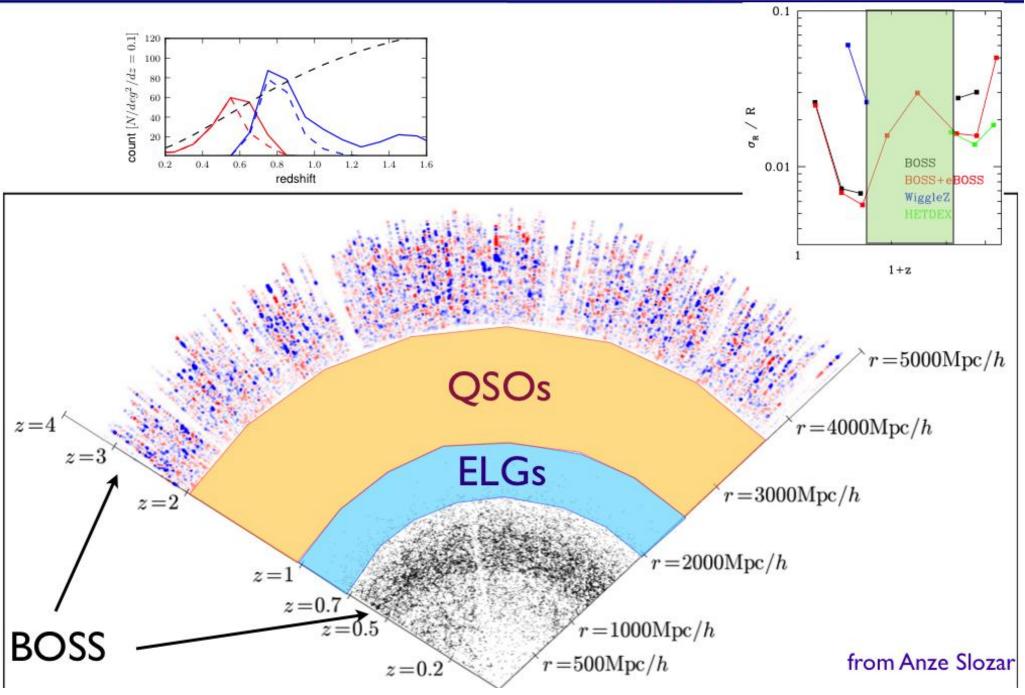
Selected for AS3 end 2011 - survey will start mid 2014


J.-P. Kneib, F. Abdalla, J. Annis, E. Aubourg, D. Bacon, S. Bailey, G. Bernstein, A. Bolton, N. Brandt, J. Brownstein, Y. Cai, F. Castander, J. Cepa, J. Comparat, R. Croft, F. Courbin, J.-G. Cuby, S. Das, L. Da Costa, A. Dey, A. Ealet, S. Escoffier, J. Frieman, S. Ho,, R. Kron, O. Lahav, J.-M. Le Goff, O. Le Fèvre, M. Limousin, C. Magneville, M.
Maia, M. Makler, G. Meylan, P. McDonald,, N. Mostek, A. Myers, J. Newman, B. Nichol, N. Padmanabhan, N. Palanque-Delabrouille, J. Peacock, W. Percival, C. Peroux, P. Petitjean, M. Pieri, F. Prada, J. Rich, E. Rollinde, E. Rozo, E. Rykoff, V. Ruhlmann-Kleider, M. Sako, B. Santiago, C. Schimd, D. Schlegel, D. Schneider, U. Seljak, A. Slosar, M. Takada, C. Tao, L. Tasca, R. Tojeiro, L. Verde, M. White, C. Yèche, and I. Zehavi


66 co-ls, from 29 institutes signed the proposal growing interest - you are welcome to join!

Talk to Mike Blanton!

Measuring the Expansion History of the Universe between 7 and 11 billions of Light-Year with Galaxies & Quasars


Size of the observable universe : 90 billion light years

e-BOSS Summary

- a new cosmology project that pushes the reach of the Sloan Telescope to map the LSS beyond z=0.6 (BAO, RSD):
 - probe 0.6<z<~I.6 with Emission-Line-Galaxies (ELG)
 - probe 0.6<z<0.8 with Luminous Red Galaxies (LRG)
 - probe I < z < ~ 2.2 with QSOs
 - increase the sample of z>2.2 QSOs for Ly-forest survey
 - accomodate TDSS (Variability) and SPIDERS (eROSITA) targets
- provide new competitive BAO+RSD+WL Dark Energy constraints in the footprint of new <u>WL/cluster</u> DE survey [e.g. DES, KIDS, Scube]:
 - double the signal in the Ly-alpha forest compared to BOSS
 - a factor of \sim 2+ improvement in DETF-FOM for BAO compared to BOSS.
 - develop synergy with the new WL and cluster DE probes.
- provide a wealth of ancillary sciences:
 - Galaxy Evolution and Quasar/IGM sciences
 - Lensing (photo-z calibration and tracing clusters/groups, strong lensing)
 - Multi-wavelength science using synergy with other very wide field survey

Kneib

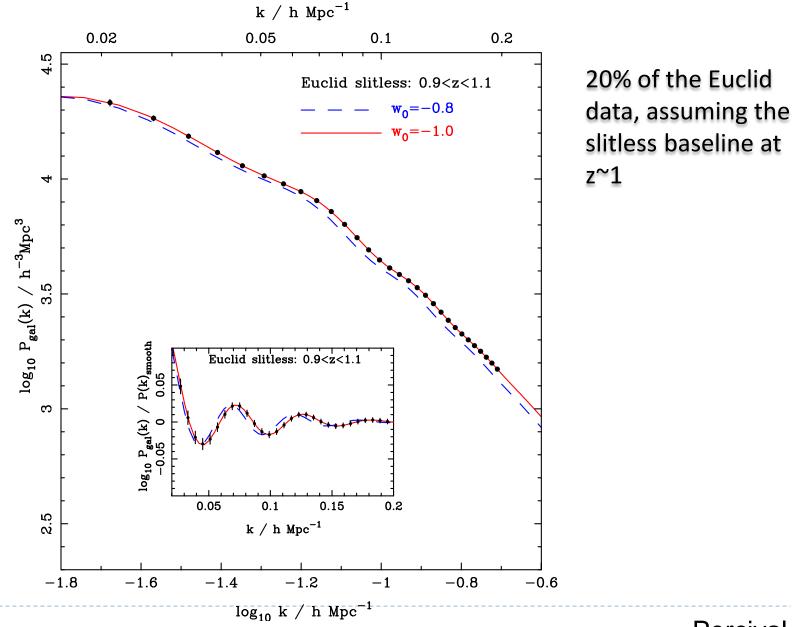
e-BOSS LSS mapping

e-BOSS numbers

- Survey Strategy:
 - ~2,500 sq.deg.
 - survey area visited 3 times over the project (finish before BigBOSS starts), ~Ih exposures (similar to BOSS)
 - ~400k ELGs
 - ~200k LRGs (at z>0.6)
 - ~350k QSOs (100k at z>2.2)
 - ~100k targets from TDSS & SPIDERS (variability+AGN)
 - repeat observations on some targets (Ly-alpha QSOs, hi-z LRGs, timevariability spectroscopy), and observation of close objects closer than the fiber collision limit (galaxy pairs, galaxy members in a cluster, galaxyquasar close pairs ...) offer new science topics!

Euclid

SURVEYS								
	Area (deg2)		Description					
Wide Survey	15,000 (required)		Step and stare with 4 dither pointings per step.					
	20,000 (goal)							
Deep Survey	40		In at least 2 patches of $> 10 \text{ deg}^2$					
			2 magnitude	es deeper than	n wide survey			
		PAYLO	4D					
Telescope		1.2 m Korsch, 3 mirror anastigmat, f=24.5 m						
Instrument	VIS		NISP					
Field-of-View	$0.787 \times 0.709 \text{ deg}^2$		$0.763 \times 0.722 \text{ deg}^2$					
Capability	Visual Imaging	NIR	NIR Imaging Photometry NIR Spectrosco		NIR Spectroscopy			
		,						
Wavelength range	550–900 nm	Y (920-	J (1146-1372	Н (1372-	1100-2000 nm			
		1146nm),	nm)	2000nm)				
Sensitivity	24.5 mag	24 mag	24 mag	24 mag	3 10 ⁻¹⁶ erg cm-2 s-1			
	10σ extended source	5σ point	5σ point	5σ point	3.5σ unresolved line			
		source	source	source	flux			
Detector	36 arrays		16 arrays					
Technology	4k×4k CCD		2k×2k NIR sensitive HgCdTe detectors					
Pixel Size	0.1 arcsec		0.3 arcsec		0.3 arcsec			
Spectral resolution			R=250		R=250			
SPACECRAFT								
Launcher Soyuz ST-2.1 B from Kourou								
Orbit	Large Sun-Earth Lagrange point 2 (SEL2), free insertion orbit							
Pointing	25 mas relative pointing error over one dither duration							
	30 arcsec absolute pointing error							
Observation mode	Step and stare, 4 dither frames per field, VIS and NISP common $FoV = 0.54 \text{ deg}^2$							
Lifetime	7 years							
Operations 4 hours per day contact, more than one ground station to cope with seasonal visibility								


Science summary

Two primary probes: new physics and systematics

Weak lensing and galaxy clustering

	Modified Gravity	Dark Matter	Initial Conditions	Dark Energy		
Parameter	y	m√eV	f_{NL}	w_p	Wa	FoM
Euclid Primary	0.010	0.027	5.5	0.015	0.150	430
Euclid All	0.009	0.020	2.0	0.013	0.048	1540
Euclid+Planck	0.007	0.019	2.0	0.007	0.035	4020
Current	0.200	0.580	100	0.100	1.500	~10
Improvement Factor	30	30	50	>10	>50	>300

Euclid clustering measurements

Summary

- BOSS is half way to Stage III
 LCDM + GR survives at 10% level
- Push now towards Stage VI
 - DES + eBOSS could deliver something quite unique by 2018
- Euclid should be adopted in June!