

Non-DE science with DESpec

DARK ENERGY SURVEY

Daniel Thomas

Institute of Cosmology and Gravitation University of Portsmouth

- Galaxy evolution in large volumes
- DESpec legacy (flavour of)
 - Galaxy populations
 - Galaxy physics
 - Dark matter content

<u>_</u> ...

Galaxies in a cold, dark universe

Galaxies grow out of primordial density fluctuations amplified by gravitational instability acting on dark matter

Galaxies

Daniel Thomas - Non-DE science with DESpec

DESpec workshop, KICP, May 2012

Millennium simulations (Springel et al 2005)

Beating cosmic variance

Driver et al 2011

Bigger & deeper with DESpec

- SDSS: z ~ 0.1
- GAMA: z ~ 0.3

Galaxy evolution with DESpec

Using spectroscopic redshifts

- Several Evolution of mass/luminosity functions
- Second text Evolution of galaxy sizes
- Galaxy merger fractions
- Photometric stellar ages, metallicities and galaxy masses

Using spectra

- Detailed star formation histories
- Chemical element abundance ratios
- Stellar kinematics and dynamical galaxy masses
- Stellar winds and feedback
- Emission line characteristics AGN vs SF activity
- Mass profiles through galaxy lenses
- ..

Evolution of the galaxy mass function

Maraston et al 2012

- ♀ Constrain high-mass end of the mass function
- Evolution with redshift
- Discrepancy with galaxy formation models
- Beyond z=1?

Daniel Thomas - Non-DE science with DESpec

Galaxy physics with spectroscopy

Schawinski, Thomas et al 2007 1036 Maraston 2005 1034 ⁻lux (erg/cm²/s²-1/A) 1032 1030 1028 1026 10 1000 1000 velength (A) 0.8 0.6 0.4 0.2 3800 4000 4200 4400 4600 4800 5000 5200 5400 λ [Å] Puzia et al 2004

- Stars in galaxies keep the fossil record over formation history and dynamical matter content
- Stellar population models to derive parameters
- Multi-band photometry over large wavelength base or medium-resolution spectroscopy

Emission line spectrum

Gas ionisation stage, star formation/black hole activity, gas kinematics, galactic outflows, gas accretion

Absorption line spectrum

stellar kinematics, dynamical stellar masses, dark matter, stellar populations, star formation histories, metal content, element ratios

DESpec workshop, KICP, May 2012

4000

 $\lambda_{rest-frame}$ [Ang]

z~

0.5

0.0

3000

6000

5000

Gas physics with DESpec

Daniel Thomas - Non-DE science with DESpec

DESpec workshop, KICP, May 2012

Precision spectroscopy at $z \approx 0.5$

- Star forminggalaxies @z=0.6
- Detection of galactic outflows

Chisholm et al 2012

Thomas et al 2012

- Ohemical element ratios
- Chemical enrichment since z=0.5
- Constrain formation histories

Dark matter in the past

- Extension of SLACS/BELLS survey to higher redshift
- Velocity shift in emission line spectrum
- Dark matter profiles of distant galaxies

Bolton et al 2012; Brownstein et al 2012

- Redshift evolution of dynamical to stellar mass ratio
- Dark matter fraction increases with time
- \bigcirc With DESpec up to z=1

Beifiori et al 2012

DESpec workshop, KICP, May 2012

Daniel Thomas - Non-DE science with DESpec

Wish list

How about including constraints on cosmology?

- Medium spectral resolution R~2000
- 🗹 Red CCD
- ✓ LRG target selection
- Dense targeting around z=1
- ☑ High S/N (maybe not...)
- Enough spectra for stacking...

Emission line spectrum

Gas ionisation stage, star formation/black hole activity, gas kinematics

Absorption line spectrum

stellar kinematics, dynamical stellar masses, dark matter, stellar populations, star formation histories, metal content, element abundance ratios