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Figure of Merit (FoM):  Expansion x Growth
w(z) -> Expansion History (background metric)

    we will use w0 and wa

γ -> Growth History (metric perturbations)
       probably need one more parameter here

Om - ODE - h - sig8 - Ob - w0 - wa -γ- ns - bias(z)

1
=    –––––––––––––––––
       σ(w0)  σ(wa) σ(γ)

θ = − f(Ω) δ
f = growth rate factor: tell us if gravity is really 
responsible for structure formation!
Could also tell us about cosmological parameters or 
Modify Gravity

Linear Theory:   P(k,z) ~ D2(z) P(k,0)
   
+
mass conservation
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Cosmology with Galaxy Clustering: 
Probes used

astro-­‐ph:1109.4852

Combine (cross-correlate) Photometric & Spectroscopic Surveys

Focus here only on large scales, where bias is only weakly no-linear (and 
r~1) but evolves with redshift and luminosity b=b(z)

1. Angular clustering: Galaxy-Galaxy (GG) autocorrelation 

in narrow redshift bins

2. Weak Lensing: Shear-Shear (SS), Galaxy-Shear (GS) & 

Magnification (MAG = GG cross-correlations)

3. Redshift Space Distortions: RSD, ratio transverse to 

radial modes



Galaxy Clustering: 2pt
(in real space)

• 3D:  all modes to be measured

• traces galaxies (not DM)

• is biased:  can not be used for 
precision cosmology (unless modeled)

• considerable effort to understand bias 
=> galaxy formation models

Millenium  Simulation (MS) Springel



Galaxy Biasing:
On large scales, DM halos (that 
host galaxies) and dark-matter 

particles trace very similar 
structures (LSS): we can use 

halos (and galaxies) to study LSS

Halos (10^11 Msol) in MS

DM in MS
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Galaxy bias evolution (~ luminosity evolution):   
how many parameters?

The characteristic time scales for bias evolution is ∆a > 0.1, corresponding to t > 1Gyr, 
which is typical of galaxy evolution: 4-5 values between z = 0.2-1.5

Simulations show that 4 values 
(between z=0.2-1.4)

of b(z) are enough for 1% accuracy

 ξϵ(r)≣< δmϵ> ~ 0



Some conclusions for galaxy bias in simulations:

✴ does not depend on scale and r=1 for r12>20 Mpc 
(at <1% accuracy)

✴ b(z) evolves over time-scales of 1Gyr                   
(as D(z) or galaxy evolution) => 4 parameters

We can therefore use galaxy clustering for precision (1%) 
cosmology if we restrict to linear scales and use b(z) for evolution.

But note that b(z) is degenerate with D(z):

PG(k,z)= D2(z) b2(z) Pm(k,0)

 so galaxy-galaxy (in real space) alone is not enough to 
measure growth: γ



Weak Lensing
• galaxy fluctuations due to lensing

• galaxy fluctuations

• galaxy & shear correlations compared to 
matter 
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obtained by using smaller bin widths, but this is left for a

future analysis. In this sense our results are conservative.

3.1 Magnification & Shear

Magnification µ is defined as:

µ =
1

detA
=

1

(1− κ)2 − |γ|2 (33)

where A is the Jacobian matrix for the lensing transforma-

tion (see e.g. Bartelmann & Schneider 2000). In the weak

lensing limit, fluctuations in magnification µ, convergence
κ and shear γ are closely related. Fluctuations in (E-field)

shear � and convergence are equal, δκ = δ� (see e.g. Hu &

Jain 2004) and, according to Eq.??, they are half as large

as magnification δµ = 2δκ. As κ can be obtained from shear

measurements, we will also use κ to refer directly to shear.

But we should bear in mind that some shear estimators are

given in terms of δκ/2 (e.g. the iCosmos software of Re-

fregier et al. 2011) and other combinations. In our FM ap-

proach this will only be relevant when introducing the scale

for the intrinsic noise ellipticity.

We will focus here in convergence, δκ, as reconstructed
from galaxy shapes measurements (that we will call shear),

and magnification, δµ, as estimated from fluctuations in

galaxy number density counts. Magnification changes the

area of the background sources behind lenses, this induces

a background fluctuation δg � −δµ which is correlated with

the foreground galaxy population. Additionally, background

magnitudes are also affected inducing additional galaxy den-

sity fluctuations in δg across the sample magnitude limit.

Adding both contributions gives

δg = (2.5s− 1)δµ � (5s− 2)δκ (34)

where s here is the slope of the galaxy number counts at the

flux limit. Dust extinction in the lenses can also produce

significant fluctuations. Menard et al. (2010) have shown

that at sufficient large wavelengths, i.e. I and Z bands, dust

extinction becomes negligible and the change in magnitude

is dominated by magnification. In our analysis we will use

I magnitudes to select galaxies and neglect dust extinction,

although this might not always be a good approximation

(see Fang et al. 2011).

Weak lensing convergence in bin j is given by the pro-

jected matter density δmi in all foreground redshifts i < j:

δkj (
�θ) =

�

i<j

p̄ijδmi(
�θ) (35)

where p̄ij < 1 is a geometrical WL weight that will be in-

troduced later on and �θ are sky positions. We then have

the following relation between observed galaxy fluctuation

at background bin j, i.e. δ̂gj , and the foreground DM distri-

bution:

δ̂gj (�θ) � bjδmj (
�θ) + �j(�θ) +

�

i<j

pijδmi(
�θ) (36)

where pij = (5s − 2)p̄ij and we have used the linear local

bias with stochasticity �, defined in Eq.??. If we neglect

� we can use the observed δ̂g(�θ) and δk(�θ) maps and the

above Eq.?? and Eq.?? to reconstruct both δm(�θ) and also

bi and pij (see Pen 2004). In general it is not clear to what

extend we can neglect �. What we do here instead is to

consider cross-correlations. The galaxy-galaxy and galaxy-

shear cross-correlations then relates directly to the matter

auto correlations

< δ̂gi δ̂gi > � b2i < δmiδmi > (37)

< δ̂gi δ̂gj > � bipij < δmiδmi > i < j

< δ̂gi δ̂kj > � bip̄ij < δmiδmi > i < j

where we keep only leading order in pij << 1. We have

neglected < �iδi > and < �i�j > terms, which seems to

be a good approximation on large linear scales as we find

that the cross-correlation r defined in Eq.?? is very close

to unity (see discussion in §2.4 and Fig,??). More generally,

when r �= 1 we need to replace bi by biri in the second and

thrid equations. This has little impact in our predictions as

shown in §??.
Galaxy-galaxy cross-correlations from pairs of different

redshift bins can be combined with the galaxy-galaxy auto-

correlation to measure bias bi and pij and < δmiδmi > with

a radial precision given by the number of independent red-

shift bins. The same information can also be obtained from

combining galaxy-shear cross-correlation and galaxy-galaxy

autocorrelation.

Note that in our approach we ignore all the radial modes

as the intrinsic < δmiδmj > correlation is negligible for dis-

joined top-hat bins i �= j when ∆z > 0.02. It could be

possible to include radial modes by using smaller redshift

bins but this requires going beyond the Limber approxima-

tion, a study that we leave for future analysis (see Challinor

& Lewis 2011). In this sense our results are conservative, as

we do not include radial modes or very fine radial bins. As

we increase the radial resolution (or number of independent

redshift bins) the number of independent transverse modes

ki = �/ri also increases.

Finally, recall that we do not include redshift space dis-

tortions (RSD) in the modeling of angular correlations. This

is a very good approximation for lensing because it has a

very broad radial window which washes away the effect of ra-
dial peculiar velocities. For the angular galaxy-galaxy auto-

correlation in narrow redshift bins, this is not a good approx-

imation (see Nock et al. 2010, Crocce, Cabré & Gaztañaga

2010 and references therein). As mentioned in §2.3 our ap-

proach is to model angular clustering as transverse modes in

real space and include the effect of RSD through the ratios

of the amplitude of clustering as we change from transverse

to radial modes within a single redshift bin (see §2.5).

3.2 Correlations & Power spectrum

Consider measurements of angular galaxy density and shear

in a set of z-bins i = 1, .., Nz. Then the projected measure-

ment of A in bin i is:

δAi(
�θ) =

�
dz pAi(z)δm(r�θ, z) (38)

where δm is the 3D dark matter fluctuation, �θ gives the

angular position, r = r(z) is the comoving transverse (or

c� 2011 RAS, MNRAS 000, 1–10
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obtained by using smaller bin widths, but this is left for a

future analysis. In this sense our results are conservative.

3.1 Magnification & Shear

Magnification µ is defined as:

µ =
1

detA
=

1

(1− κ)2 − |γ|2 (33)

where A is the Jacobian matrix for the lensing transforma-

tion (see e.g. Bartelmann & Schneider 2000). In the weak

lensing limit, fluctuations in magnification µ, convergence
κ and shear γ are closely related. Fluctuations in (E-field)

shear � and convergence are equal, δκ = δ� (see e.g. Hu &

Jain 2004) and, according to Eq.??, they are half as large

as magnification δµ = 2δκ. As κ can be obtained from shear

measurements, we will also use κ to refer directly to shear.

But we should bear in mind that some shear estimators are

given in terms of δκ/2 (e.g. the iCosmos software of Re-

fregier et al. 2011) and other combinations. In our FM ap-

proach this will only be relevant when introducing the scale

for the intrinsic noise ellipticity.

We will focus here in convergence, δκ, as reconstructed
from galaxy shapes measurements (that we will call shear),

and magnification, δµ, as estimated from fluctuations in

galaxy number density counts. Magnification changes the

area of the background sources behind lenses, this induces

a background fluctuation δg � −δµ which is correlated with

the foreground galaxy population. Additionally, background

magnitudes are also affected inducing additional galaxy den-

sity fluctuations in δg across the sample magnitude limit.

Adding both contributions gives

δg = (2.5s− 1)δµ � (5s− 2)δκ (34)

where s here is the slope of the galaxy number counts at the

flux limit. Dust extinction in the lenses can also produce

significant fluctuations. Menard et al. (2010) have shown

that at sufficient large wavelengths, i.e. I and Z bands, dust

extinction becomes negligible and the change in magnitude

is dominated by magnification. In our analysis we will use

I magnitudes to select galaxies and neglect dust extinction,

although this might not always be a good approximation

(see Fang et al. 2011).

Weak lensing convergence in bin j is given by the pro-

jected matter density δmi in all foreground redshifts i < j:

δkj (
�θ) =

�

i<j

p̄ijδmi(
�θ) (35)

where p̄ij < 1 is a geometrical WL weight that will be in-

troduced later on and �θ are sky positions. We then have

the following relation between observed galaxy fluctuation

at background bin j, i.e. δ̂gj , and the foreground DM distri-

bution:

δ̂gj (�θ) � bjδmj (
�θ) + �j(�θ) +

�

i<j

pijδmi(
�θ) (36)

where pij = (5s − 2)p̄ij and we have used the linear local

bias with stochasticity �, defined in Eq.??. If we neglect

� we can use the observed δ̂g(�θ) and δk(�θ) maps and the

above Eq.?? and Eq.?? to reconstruct both δm(�θ) and also

bi and pij (see Pen 2004). In general it is not clear to what

extend we can neglect �. What we do here instead is to

consider cross-correlations. The galaxy-galaxy and galaxy-

shear cross-correlations then relates directly to the matter

auto correlations

< δ̂gi δ̂gi > � b2i < δmiδmi > (37)

< δ̂gi δ̂gj > � bipij < δmiδmi > i < j

< δ̂gi δ̂kj > � bip̄ij < δmiδmi > i < j

where we keep only leading order in pij << 1. We have

neglected < �iδi > and < �i�j > terms, which seems to

be a good approximation on large linear scales as we find

that the cross-correlation r defined in Eq.?? is very close

to unity (see discussion in §2.4 and Fig,??). More generally,

when r �= 1 we need to replace bi by biri in the second and

thrid equations. This has little impact in our predictions as

shown in §??.
Galaxy-galaxy cross-correlations from pairs of different

redshift bins can be combined with the galaxy-galaxy auto-

correlation to measure bias bi and pij and < δmiδmi > with

a radial precision given by the number of independent red-

shift bins. The same information can also be obtained from

combining galaxy-shear cross-correlation and galaxy-galaxy

autocorrelation.

Note that in our approach we ignore all the radial modes

as the intrinsic < δmiδmj > correlation is negligible for dis-

joined top-hat bins i �= j when ∆z > 0.02. It could be

possible to include radial modes by using smaller redshift

bins but this requires going beyond the Limber approxima-

tion, a study that we leave for future analysis (see Challinor

& Lewis 2011). In this sense our results are conservative, as

we do not include radial modes or very fine radial bins. As

we increase the radial resolution (or number of independent

redshift bins) the number of independent transverse modes

ki = �/ri also increases.

Finally, recall that we do not include redshift space dis-

tortions (RSD) in the modeling of angular correlations. This

is a very good approximation for lensing because it has a

very broad radial window which washes away the effect of ra-
dial peculiar velocities. For the angular galaxy-galaxy auto-

correlation in narrow redshift bins, this is not a good approx-

imation (see Nock et al. 2010, Crocce, Cabré & Gaztañaga

2010 and references therein). As mentioned in §2.3 our ap-

proach is to model angular clustering as transverse modes in

real space and include the effect of RSD through the ratios

of the amplitude of clustering as we change from transverse

to radial modes within a single redshift bin (see §2.5).

3.2 Correlations & Power spectrum

Consider measurements of angular galaxy density and shear

in a set of z-bins i = 1, .., Nz. Then the projected measure-

ment of A in bin i is:

δAi(
�θ) =

�
dz pAi(z)δm(r�θ, z) (38)

where δm is the 3D dark matter fluctuation, �θ gives the

angular position, r = r(z) is the comoving transverse (or
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obtained by using smaller bin widths, but this is left for a

future analysis. In this sense our results are conservative.

3.1 Magnification & Shear

Magnification µ is defined as:

µ =
1

detA
=

1

(1− κ)2 − |γ|2 (33)

where A is the Jacobian matrix for the lensing transforma-

tion (see e.g. Bartelmann & Schneider 2000). In the weak

lensing limit, fluctuations in magnification µ, convergence
κ and shear γ are closely related. Fluctuations in (E-field)

shear � and convergence are equal, δκ = δ� (see e.g. Hu &

Jain 2004) and, according to Eq.??, they are half as large

as magnification δµ = 2δκ. As κ can be obtained from shear

measurements, we will also use κ to refer directly to shear.

But we should bear in mind that some shear estimators are

given in terms of δκ/2 (e.g. the iCosmos software of Re-

fregier et al. 2011) and other combinations. In our FM ap-

proach this will only be relevant when introducing the scale

for the intrinsic noise ellipticity.

We will focus here in convergence, δκ, as reconstructed
from galaxy shapes measurements (that we will call shear),

and magnification, δµ, as estimated from fluctuations in

galaxy number density counts. Magnification changes the

area of the background sources behind lenses, this induces

a background fluctuation δg � −δµ which is correlated with

the foreground galaxy population. Additionally, background

magnitudes are also affected inducing additional galaxy den-

sity fluctuations in δg across the sample magnitude limit.

Adding both contributions gives

δg = (2.5s− 1)δµ � (5s− 2)δκ (34)

where s here is the slope of the galaxy number counts at the

flux limit. Dust extinction in the lenses can also produce

significant fluctuations. Menard et al. (2010) have shown

that at sufficient large wavelengths, i.e. I and Z bands, dust

extinction becomes negligible and the change in magnitude

is dominated by magnification. In our analysis we will use

I magnitudes to select galaxies and neglect dust extinction,

although this might not always be a good approximation

(see Fang et al. 2011).

Weak lensing convergence in bin j is given by the pro-

jected matter density δmi in all foreground redshifts i < j:

δkj (
�θ) =

�

i<j

p̄ijδmi(
�θ) (35)

where p̄ij < 1 is a geometrical WL weight that will be in-

troduced later on and �θ are sky positions. We then have

the following relation between observed galaxy fluctuation

at background bin j, i.e. δ̂gj , and the foreground DM distri-

bution:

δ̂gj (�θ) � bjδmj (
�θ) + �j(�θ) +

�

i<j

pijδmi(
�θ) (36)

where pij = (5s − 2)p̄ij and we have used the linear local

bias with stochasticity �, defined in Eq.??. If we neglect

� we can use the observed δ̂g(�θ) and δk(�θ) maps and the

above Eq.?? and Eq.?? to reconstruct both δm(�θ) and also

bi and pij (see Pen 2004). In general it is not clear to what

extend we can neglect �. What we do here instead is to

consider cross-correlations. The galaxy-galaxy and galaxy-

shear cross-correlations then relates directly to the matter

auto correlations

< δ̂gi δ̂gi > � b2i < δmiδmi > (37)

< δ̂gi δ̂gj > � bipij < δmiδmi > i < j

< δ̂gi δ̂kj > � bip̄ij < δmiδmi > i < j

where we keep only leading order in pij << 1. We have

neglected < �iδi > and < �i�j > terms, which seems to

be a good approximation on large linear scales as we find

that the cross-correlation r defined in Eq.?? is very close

to unity (see discussion in §2.4 and Fig,??). More generally,

when r �= 1 we need to replace bi by biri in the second and

thrid equations. This has little impact in our predictions as

shown in §??.
Galaxy-galaxy cross-correlations from pairs of different

redshift bins can be combined with the galaxy-galaxy auto-

correlation to measure bias bi and pij and < δmiδmi > with

a radial precision given by the number of independent red-

shift bins. The same information can also be obtained from

combining galaxy-shear cross-correlation and galaxy-galaxy

autocorrelation.

Note that in our approach we ignore all the radial modes

as the intrinsic < δmiδmj > correlation is negligible for dis-

joined top-hat bins i �= j when ∆z > 0.02. It could be

possible to include radial modes by using smaller redshift

bins but this requires going beyond the Limber approxima-

tion, a study that we leave for future analysis (see Challinor

& Lewis 2011). In this sense our results are conservative, as

we do not include radial modes or very fine radial bins. As

we increase the radial resolution (or number of independent

redshift bins) the number of independent transverse modes

ki = �/ri also increases.

Finally, recall that we do not include redshift space dis-

tortions (RSD) in the modeling of angular correlations. This

is a very good approximation for lensing because it has a

very broad radial window which washes away the effect of ra-
dial peculiar velocities. For the angular galaxy-galaxy auto-

correlation in narrow redshift bins, this is not a good approx-

imation (see Nock et al. 2010, Crocce, Cabré & Gaztañaga

2010 and references therein). As mentioned in §2.3 our ap-

proach is to model angular clustering as transverse modes in

real space and include the effect of RSD through the ratios

of the amplitude of clustering as we change from transverse

to radial modes within a single redshift bin (see §2.5).

3.2 Correlations & Power spectrum

Consider measurements of angular galaxy density and shear

in a set of z-bins i = 1, .., Nz. Then the projected measure-

ment of A in bin i is:

δAi(
�θ) =

�
dz pAi(z)δm(r�θ, z) (38)

where δm is the 3D dark matter fluctuation, �θ gives the

angular position, r = r(z) is the comoving transverse (or
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Redshift Space Distortions
• Depends on bias

• But also has a term that only depends on 
velocity divergence

• f can be separated by comparison of 
transverse to radial modes

BAO (Baryon Acoustic Oscillations)

• Independent on bias

• 1-2 D
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Cosmology with Galaxy Clustering

1. GG auto-correlations 

2. Weak Lensing: SS, GS, MAG=GG cross-correaltions

3. Redshift Space Distortion

astro-­‐ph:1109.4852

Combine (cross-correlate) Photometric & 
Spectroscopic Surveys 
and all different probes

Model Photo-z influence: transitions and errors 

Cosmology from lensing & redshift distortions 13

pκipκj in Eq.?? is always very broad, while φzipκj can be

as narrow as needed.

Another point to note is the fact that the galaxy-galaxy

or galaxy-shear cross-correlations only depend on pk � 10
−1

while shear-shear depends on p2k � 10
−2

. This means that

the amplitude of shear-shear correlation is much smaller and

is therefore sensitive to smaller amplitudes in systematic ef-

fects. Moreover, the effect of systematics will tend to cancel

in a cross-correlation analysis to a larger extend than in the

auto-correlation. But these are generic considerations and

ultimately the key point is that systematics are quite differ-
ent in both measurements.

3.9 Covariance

In the Gaussian limit, the covariance between one pair of

observables in Eq.?? at redshift bins (ij) and another pair

at redshift bins (kl) is given by:

Θij;kl ≡ Cov(Cij ;Ckl) =
ĈikĈjl + ĈilĈjk

N(�)
(60)

where N(�) is the number of modes at a given �. In our case

we bin the l modes as ∆� � 2/fsky (see Cabre et al. 2007)

to avoid correlation induced by the limited fraction of sky

covered (fsky). The number of modes of each � is then

N(�) = (2�+ 1)fsky∆� � 2(2�+ 1) (61)

The observables Ĉ in the covariance include observational

noise:

Ĉgnigmj = Cgnigmj +
1

n̄gn
δij δnm (62)

Ĉκiκj = Cκiκj +
σ2
κ

n̄κ
δij (63)

Ĉκignj = Cκignj (64)

where n̄κ and n̄gn are the surface density of galaxies with

measured shear and galaxies of type n with good photometry

respectively and σ2
κ is the variance in convergence from in-

trinsic ellipticities. Note that σκ < 1 while n̄gn > n̄κ so that

the noise could be larger or smaller in shear-shear than in

galaxy-galaxy, depending on the depth and quality of data.

3.10 Signal to Noise

From the above covariance we can estimate the signal to

noise S/N ratio for the galaxy auto-correlation Cgigi(�)

(S/N)
2
gigi =

N(�)
2

(65)

and compare it to the galaxy-galaxy cross-correlation

Cgigj (�)

(S/N)
2
gigj �

C2
ijN(�)

CiiCjj
∝ N(�)∆i∆j ∝ N(�)

N2
z

(66)

where in the first step we have used that C2
ij < CjjCii and

Cii ∝ 1/∆i, where ∆i ∝ 1/Nz is the redshift bin width

and Nz is the number of redshift bins. The total S/N is the

sum over all the Nz redshift bins. In the case of the cross-

correlation there are Nz(Nz − 1)/2 pairs and therefore the

total S/N is independent of the number of bins for large

Nz. Something similar happens when considering RSD or

in general 3D P (k) measurements. This means that there

is no S/N gain in using many redshift bins. We could gain

information in cases where the signal varies on radial scales

comparable to the redshift bin width. Both cosmological pa-

rameters and galaxy formation (i.e. biasing) vary on scales

∆a = 0.1. This means that there is no information gain in

using smaller bins in this case.

In the case of galaxy-shear:

(S/N)
2
giκj

�
C2

gigjN(�)

CgigiCkjkj

∝ N(�)∆i ∝
N(�)
Nz

(67)

Here there are only Nz galaxy-shear pairs per shear bin,

so again the total signal to noise is quite insensitive to the

number of bins.

In the case of the autocorrelation Cii in Eq.??, the total
S/N increases with number of bins and there is a net S/N

gain in using more bins. This gain is only limited by the

increase of shot-noise for small redshift bins and the fact

that very narrow nearby bins are no longer independent.

Thus, while shear-shear and galaxy-shear are useful to re-

cover galaxy bias, the gain from using narrow bins comes

from galaxy-galaxy auto correlations. This is a key point to

understand the results in this paper.

3.11 Photo-z error transitions

First we study the case of galaxy-galaxy cross-correlations.

Consider the transition probability Tij that a galaxy at bin

j is measured to be at bin i because of the photo-z error.

The number of galaxies measured in bin i, N̄i, is then:

N̄i =

�

j

Tij Nj (68)

where Nj is the true number of galaxies in bin j. To include

the effect of photo-z errors in the cross-correlations we need

to define the relative transition probability , or migration

matrixrij , as the fraction of the galaxies assigned to z-bin i
which really are in bin j, ie:

rij ≡ Tij
Nj

N̄i
=

TijNj�
j TijNj

=
Tij < Nj >�
j Tij < Nj >

(69)

where by construction:

�

j

rij = 1 ∀i (70)

Note that when rij is a smooth function of the redshift dis-

tance zj − zi, rij will also be independent of the redshift

width ∆z for |zj − zi| > ∆z. These rij transitions cor-

respond to the contamination matrix Cps in Bernstein &

Huterer (2010) and give the probability P (zs|zp) for a true

redshift is zs to be measured in photo-z redshift zp. The last
equality in Eq.?? just indicates that the same probabilities

apply for the mean density as for regions with fluctuations:

Ni ≡< Ni > (1 + δi). We then have that the correlation

w̄ij ≡< δ̄iδ̄j > in photo-z space can be related to the true

c� 2011 RAS, MNRAS 000, 1–10



Photometric Sample
i ~ 24

!

Spectroscopic Sample
i ~ 22.5, narrow radial bins



GΚ

ΚΚ

ki=l /χi

CGiΚj

CGiGj
2

Cross-correlation Ratios:
Measure bias, ie from Cii/Cij 
Measure pij, ie from Cij/Cik
Measure P(k) ie from Cij^2/Cii

Galaxy-galaxy
Magnification
       or 
Galaxy-shear
are 3D with z

We ignore RSD here

Forecast Cross-correlations: narrow bins



18

Forecast RSD(BAO) WLxG

Spectroscopic
	
  (B=Bright) ✔ ✘

Photometric
(F=Faint) ✘ ✔

Combined	
  as	
  
independent:	
  B+F B F

Cross-­‐correlate	
  same	
  
Area:	
  	
  BxF B	
  (+F) BxF

WLxG:	
  	
  	
  	
  	
  Angular	
  clustering	
  of	
  Shear-­‐Shear;	
  Galaxy-­‐Shear;	
  Galaxy-­‐Galaxy

Observables:

Nuisance parameters: bias (4 for each B & F), photo-z transitions (rij), noise (σ/n)

RSD:	
  	
  	
  f(z)D(z);	
  b(z)D(z)	
  	
  from	
  P(k,z)	
  in	
  3D	
  with	
  	
  

Cosmological: Om - ODE - h - sig8 - Ob - w0 - wa - γ - ns - bias(z)

Fisher Matrix of RSD and WLxG are added: transverse modes+radial ratios

astro-­‐ph:1109.4852



Forecast: Planck+SNII priors

RSD RSD
+BAO

WL
Shear-
Shear

Galaxy-
Galaxy

Galaxy-
Galaxy
+ BIAS IS 
KNOWN

WLxG
+RSD

WLxG
+RSD

+
BIAS IS KNOWN 

(eg 3pt)

Photometric
(i<24) 3.2 0.3 8.4

Spectroscopic
(i<22.5) 0.5 2.7 0.1 17

Surveys Combined as 
independent 38 617

Cross Correlated over 
same Area 251 1554

astro-­‐ph:1109.4852

5000 sq.deg.

WLxG:  shear-shear, galaxy-shear, galaxy-galaxy

σ(γ) ~0.04
σ(w0) ~0.03
σ(wa) ~0.07

bias ~ 1%



Spectroscopic follow-up strategy

astro-­‐ph:1109.4852

Given a photometric survey i<24 (F5000), a 
complementary galaxy survey (B5000) will add

Probe sample FoMw FoMγ FoMwγ

RSD B5000spec 20 17 0.4

RSD B5000spec21.5 10 16 0.2

BAO B5000highz 78 - -

BAO+RSD B5000highz 100 27 2.7

BAO+WL-all F+B5000highz 384 48 17

BAO+RSD+WL-all F+B5000highz 597 66 40

WL-all+RSD FxB5000spec 2113 74 159

WL-all+RSD FxB5000spec21.5 1509 65 98



Conclusion

• Combining Spectroscopic and Photometric 
samples and different probes can bring a boost of 
x100 in FoM (roughly 2-5 times smaller errors)

✴ Req: Photo-z error transitions need to be known to 1% accuracy

✴ Req: Bias evolves on timescales>1Gyr

✴ Thanks to measurement of galaxy bias

• Spectroscopic follow-up: is better to measure 
spectra of lenses than doing BAO

• Magnification can be as useful as shear

• If more is known of bias another x5

astro-­‐ph:1109.4852


