

INSTITUTO DE

CIENCIAS DEL ESPACIO

ICE

DESpec THE DARK ENERGY SPECTROMETER KICP workshop MAY 30-31, 2012

cross-correlation of spectroscopic & photometric surveys

Francisco J Castander

Enrique Gaztañaga & Martin Eriksen (PhD student@ICE)

Martin Crocce, Pablo Fosalba IFAE: Pol Marti, Ramon Miquel **UPenn:** Anna Cabre

astro-ph:1109.4852

o o o o bottom line

MORE EFFICIENT WAY OF USING GALAXY SURVEYS:

X-CORRELATION -> UNDERSTANDING GALAXY BIAS -> X100 REWARD IN COSMOLOGICAL PARAMETER MEASUREMENTS

Om - ODE - h - sig8 - Ob - <u>w0 - wa -</u>γ- ns - bias(z)

<u>Cosmology with Galaxy Clustering:</u> <u>Probes used</u>

- I. Angular clustering: Galaxy-Galaxy (GG) autocorrelation
- in narrow redshift bins
- 2. Weak Lensing: Shear-Shear (SS), Galaxy-Shear (GS) &
- Magnification (MAG = GG cross-correlations)
- 3. Redshift Space Distortions: RSD, ratio transverse to

radial modes

Focus here only on large scales, where bias is only weakly no-linear (and $r\sim I$) but evolves with redshift and luminosity b=b(z)

<u>Combine (cross-correlate) Photometric & Spectroscopic Surveys</u>

Galaxy Clustering: 2pt (in real space)

- 3D: all modes to be measured
- traces galaxies (not DM)
- is biased: can not be used for precision cosmology (unless modeled)
- considerable effort to understand bias
 => galaxy formation models

Millenium Simulation (MS) Springel

<u>Galaxy Biasing:</u> On large scales, DM halos (that host galaxies) and dark-matter particles trace very similar structures (LSS): we can use halos (and galaxies) to study LSS

Halos (10¹ Msol) in MS

DES-MICE Galaxy Catalog Data Release v0.3 r1.0 ice.cat/mice

MICE matter overdensity at z=1

DES-MICE galaxy overdensity at z=1

Galaxy bias evolution (~ luminosity evolution): how many parameters?

The characteristic time scales for bias evolution is $\Delta a > 0.1$, corresponding to t > 1Gyr, which is typical of galaxy evolution: 4-5 values between z = 0.2-1.5

Some conclusions for galaxy bias in simulations:

H does not depend on scale and r=1 for r₁₂>20 Mpc (at <1% accuracy)</p>

★ b(z) evolves over time-scales of I Gyr
(as D(z) or galaxy evolution) => 4 parameters

We can therefore use galaxy clustering for precision (1%) cosmology if we restrict to linear scales and use b(z) for evolution.

But note that b(z) is degenerate with D(z):

 $P_G(k,z) = D^2(z) b^2(z) P_m(k,0)$

so galaxy-galaxy (in real space) alone is not enough to measure growth: γ

Weak Lensing

- galaxy fluctuations due to lensing $\delta_g = (2.5s 1)\delta_{\mu} \simeq (5s 2)\delta_{\kappa}$
- galaxy fluctuations $\hat{\delta}_{g_j}(\vec{\theta}) \simeq b_j \delta_{m_j}(\vec{\theta}) + \epsilon_j(\vec{\theta}) + \sum_{i < j} p_{ij} \delta_{m_i}(\vec{\theta})$
- galaxy & shear correlations compared to matter

Photometric Sample

Weak Lensing traces 2D unbiased dark matter distribution in front of soucers

$$C_{\kappa_j \kappa_j}(\ell) = \int_0^{z_j} dz \; p_{\kappa_j}^2(z) \; \mathcal{P}(k,z)$$

$$p_{\kappa_j}(z)\simeq rac{3\Omega_m H_0}{2H(z)a} \; rac{r(z)r(z_j;z)}{r_0r(z_j)}$$

 ${\cal P}(k,z) ~~\equiv~~ {P(k,z) \over r_H(z) r^2(z)}$

where $r_H(z) \equiv c/H(z)$, and \mathcal{P} is the adimensional power spectrum at $k = (\ell + 1/2)/r$. In linear theory $P(k, z) = D^2(z)P(k)$.

 $r(z) \sim Lens$ 1000 Mpc θ $r(z_j) \sim 2000 \text{ Mpc}$

sources

Telescope

Shear-shear tomography is still 2D

FIG. 2.— Weak lensing efficiency for shear-shear $p_{\kappa}(z, \bar{z}_i)p_{\kappa}(z, \bar{z}_j)$ for $\bar{z}_j = 1.0$ and $\bar{z}_i = 0.2, 0.4, 0.6, 0.8$ and 1.0. Top line corresponds to $p_{\kappa}(z, \bar{z}_j = 1.0)$, for galaxy-shear lensing.

Redshift Space Distortions

- Depends on bias
- But also has a term that only depends on velocity divergence
- f can be separated by comparison of transverse to radial modes

BAO (Baryon Acoustic Oscillations)

- Independent on bias
- I-2 D

Cosmology with Galaxy Clustering

Combine (cross-correlate) Photometric & Spectroscopic Surveys and all different probes

I. GG auto-correlations

2. Weak Lensing: SS, GS, MAG=GG cross-correaltions

3. Redshift Space Distortion

Model Photo-z influence: transitions and errors

$$r_{ij} \equiv T_{ij} \ \frac{N_j}{\bar{N}_i} = \frac{T_{ij}N_j}{\sum_j T_{ij}N_j} = \frac{T_{ij} < N_j >}{\sum_j T_{ij} < N_j >}$$

astro-ph:1109.4852

Forecast Cross-correlations: narrow bins

$$\delta_{A_i}(\vec{\theta}) = \int dz \ p_{A_i}(z) \delta_m(r\vec{\theta}, z) \qquad \qquad C_{A_i B_j}(\ell) = \int_0^\infty dz \ p_{A_i}(z) \ p_{B_j}(z) \ \mathcal{P}(k, z)$$

Galaxy-galaxy Magnification or Galaxy-shear are 3D with z

$$\begin{array}{c} \mathsf{C}_{\mathsf{GiKj}} \simeq b_{n_i} p_{ij} \mathcal{P}_i \\ \mathsf{C}_{\mathsf{GiGj}} \simeq b_{n_i}^2 \frac{\delta_{ij}}{\Delta_i} \mathcal{P}_i \end{array}$$

<u>Cross-correlation Ratios:</u> Measure bias, ie from Cii/Cij Measure pij, ie from Cij/Cik Measure P(k) ie from Cij^2/Cii

FIG. 2.— Weak lensing efficiency for shear-shear power $p_{\kappa}(z, \bar{z}_i)p_{\kappa}(z, \bar{z}_j)$ for $\bar{z}_j = 1.0$ and $\bar{z}_i = 0.2, 0.4, 0.6, 0.8$ and 1.0. Top line corresponds to $p_{\kappa}(z, \bar{z}_j = 1.0)$, for galaxy-shear lensing.

$$egin{aligned} \mathcal{P}_i &\equiv rac{P(k_i,ar{z}_i)}{\chi_i^2\chi_{H_i}} & ext{k_i} = ext{I}/\chi_i \ p_{ij} &\equiv p_{\kappa_j}(z_i) &\simeq egin{cases} rac{3\Omega_m H_0}{2H(z_i)a_i} & rac{\chi_i(\chi_j - \chi_i)}{\chi_{H0}\chi_j} & ext{for} & i < j \ 0 & ext{for} & i \geq j \end{aligned}$$

 $\chi_H(z) \equiv c/H(z)$

WE IGNORE RSD HERE

$$F_{\mu\nu} = \sum_{\ell \text{ or } k_i} \sum_{ij,mn} \frac{\partial C_{ij}}{p_{\mu}} \Theta_{ij;mn}^{-1} \frac{\partial C_{mn}}{p_{\nu}}$$

Forecast	RSD(BAO)	WLxG	8×104
Spectroscopic (B=Bright)		×	6×104 22.5 <i<24< td=""></i<24<>
Photometric (F=Faint)	×		ap/zp/(z)Nb
Combined as independent: B+F	В	F	2×104
Cross-correlate same Area: BxF	B (+F)	BxF	0 0.5 z 1.5

Observables:

WLxG: Angular clustering of Shear-Shear; Galaxy-Shear; Galaxy-GalaxyRSD: f(z)D(z); b(z)D(z) from P(k,z) in 3D with

Fisher Matrix of RSD and WLxG are added: transverse modes+radial ratios

<u>Nuisance parameters</u>: bias (4 for each B & F), photo-z transitions (rij), noise (σ/n)

Cosmological: Om - ODE - h - sig8 - Ob - $w0 - wa - \gamma$ - ns - bias(z)

$$FoM_{w\gamma} \simeq 2700 \ \bar{A}^{0.89} \ \eta^{0.22} \ 1.4^{m_l - 22.5} \ e^{-\bar{\sigma}_z^2 - \bar{\Delta}_r \bar{A}^{0.05}}$$

astro-ph:1109.4852

Forecast: Planck+SNII priors

WLxG: shear-shear, galaxy-shear, galaxy-galaxy

${ m FoM}_{w\gamma} onumber \ imes 10^3$	RSD	RSD +BAO	WL Shear- Shear	Galaxy- Galaxy	Galaxy- Galaxy + BIAS IS KNOWN	WLxG +RSD	WLxG +RSD + BIAS IS KNOWN (eg 3pt)	
Photometric (i<24)			3.2	0.3	8.4			
Spectroscopic (i<22.5)	0.5	2.7		0.1	17			
Surveys Combined as independent						38	617	
Cross Correlated over same Area						251	1554	
$\begin{array}{c} 0.75 \\ 0.60 \\ 0.45 \\ 0.45 \\ 0.2 \\ -0.2 \\ -1.20 \\ -1.20 \\ -1.20 \\ -1.05 \\ -0.90 \\ -0.9 \\ -0.9 \\ -1.20 \\ -1.05 \\ -0.90 \\ -0.90 \\ -0.45 \\ -0.60 \\ 0.45 \\ 0.60 \\ 0.75 \\ -0.60 \\ 0.75 \\ -0.90 \\ -0.60 \\ 0.75 \\ -0.90$								
$\omega_0 \qquad \gamma \qquad \text{astro-ph:1109.485}$						1109.4852		

Spectroscopic follow-up strategy

Given a photometric survey i<24 (F5000), a complementary galaxy survey (B5000) will add

Probe	sample	FoMw	FoMy	FoMwy
RSD	B5000spec	20	17	0.4
RSD	B5000spec21.5	10	16	0.2
BAO	B5000highz	78	_	_
BAO+RSD	B5000highz	100	27	2.7
BAO+WL-all	F+B5000highz	384	48	17
BAO+RSD+WL-all	F+B5000highz	597	66	40
WL-all+RSD	FxB5000spec	2113	74	159
WL-all+RSD	FxB5000spec21.5	1509	65	98

Conclusion

 Combining Spectroscopic and Photometric samples and different probes can bring a boost of x100 in FoM (roughly 2-5 times smaller errors)

 \star Req: Photo-z error transitions need to be known to 1% accuracy

 \star Req: Bias evolves on timescales>IGyr

 \star Thanks to measurement of galaxy bias

- Spectroscopic follow-up: is better to measure spectra of lenses than doing BAO
- Magnification can be as useful as shear
- If more is known of bias another x5