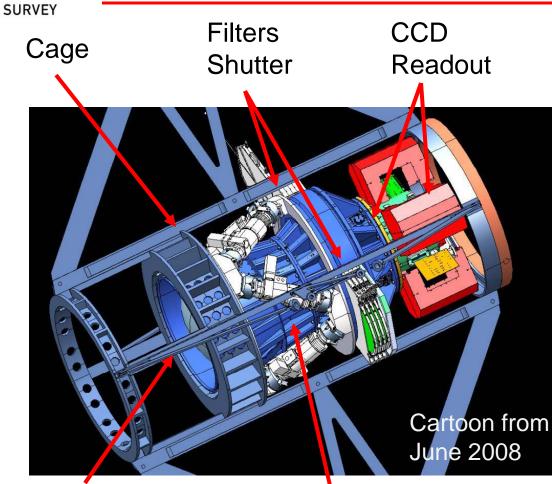



# DESpec


### Outline

- Concept
- Technical Components
  - Optics: corrector and ADC
  - Fiber Positioner
  - Fibers & Spectrographs
  - CCD & RO
  - Instrument Swap
- Instrument Simulation
- Summary





## DECam => the Blanco Telescope @ CTIO



5 Optical Lenses

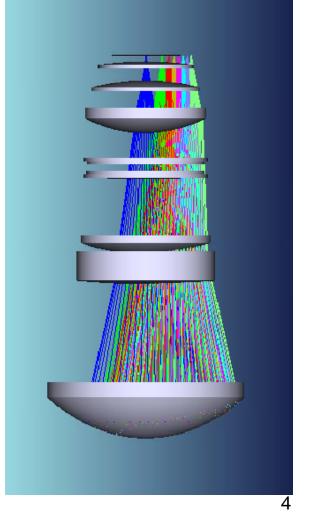
DARK ENERGY

Hexapod For alignment & focus



# **DESpec Instrument Notion**

- Build an instrument to perform spectroscopic follow-up of millions of targets identified in DES data, taking advantage of the DECam strengths (red-sensitivity).
- It's necessary that the instrument can be interchanged with DECam in a reasonably short time.
- An instrument that can be built at about the same cost and schedule as DECam (ready by the end of DES) is desired.
- Identify existing or planned components at other instruments for technical feasibility and to minimize the cost

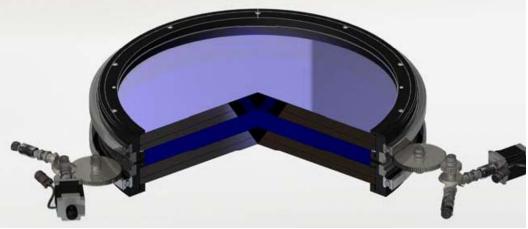



# **DESpec Optics**

Version SK-V3C by Steve Kent

DARK ENERGY SURVEY

- Reuse the DECam optics C1-C4 (focal ratio f/2.9)
- The DECam Dewar needs its window (C5) as the cover. SK designed C5' and C6 made from fused silica. C5' has an asphere on the concave side.
  - Spot size (RMS radius) 0.26" at center, 0.52" at worst, 0.44" at edge.
  - Focal surface has a slight curvature.
    radius of curvature is -8047 mm.
  - Worst chief ray (edge) comes in at 0.45 deg angle of incidence.
- Steve & David Brooks will talk about the optics in more detail




FP FoV has Radius = 225.54 mm



### Atmospheric Dispersion Compensator Example from WYIN

- When not at zenith the sky acts as a prism.
- The ODI ADC has diameter 635 mm. The prisms are rotated using a pair of encoded stepper motors.
- Two prisms each made from two wedge-shaped pieces of different glass materials.
- Issues include optical alignment and position (movement) tolerance and backlash, introduction of ghosts
- ODI ADC is very close to size required for DESpec





# ADC or Not ADC

- In the white paper we plan to provide an ADC.
- The technical justification for the D.E. science needs to be worked-out so that the question (ADC or not) isn't a matter of guesswork. Quantify:

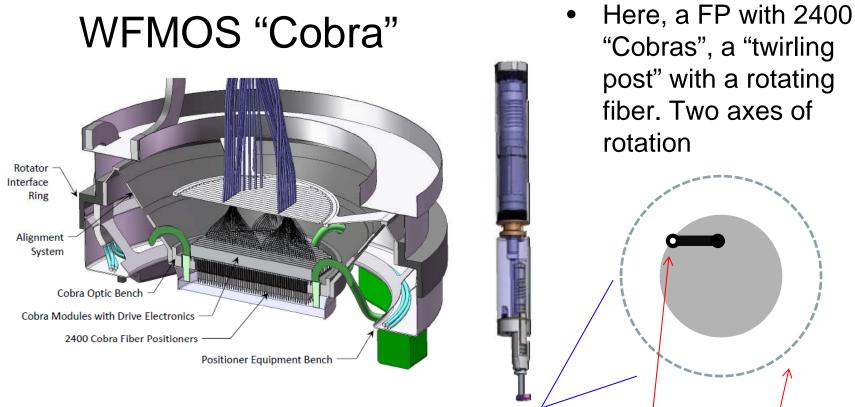
#### Reasons For (Default)

- Better Spot Size especially at 50+ deg from zenith
  - Better signal-to-noise
  - Faster measurements
  - Fainter objects
- Provides a more useful Instrument to astronomical users. That could be required in an AO.

#### Reasons Against

- Cost \$800k to \$1000k
- Increases time to change instrument by 2-4 hours?




# **Optical Fiber Positioners**

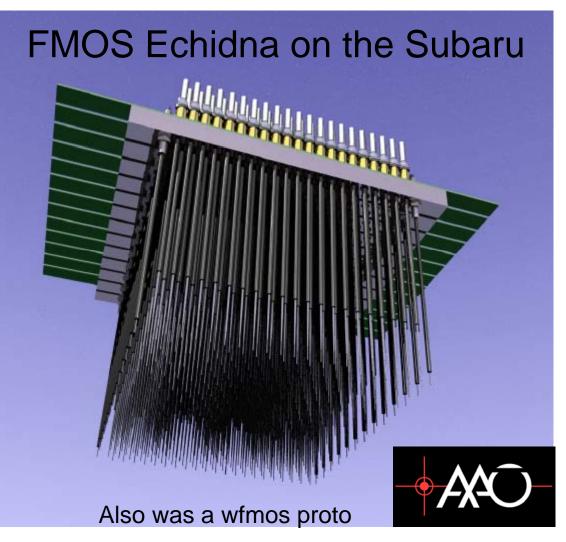
- Precisely hold the tip of optical fibers on the desired RA & DEC of the galaxy
  - Premium on small (7 mm) spacing between actuators (pitch)
  - $\pm$  0.14" ( $\pm$  1/2 pixel on DECam) position accuracy corresponds to  $\pm$ 7.5 um.
  - 60" target separation is ~3.2 mm spacing between fiber tips
  - Fast reconfiguration time: 90 seconds or less
  - Maximum throughput, highly reliable ...
- Tilting Spines and Twirling Posts
  - A kind of Twirling Posts (Cobra) design is being planned for Sumire. (See Mike Seiffert's talk).
  - A Tilting Spines design is battle-tested on FMOS. See Will Saunders' Talk



# Example "Twirling Post"

DARK ENERGY SURVEY



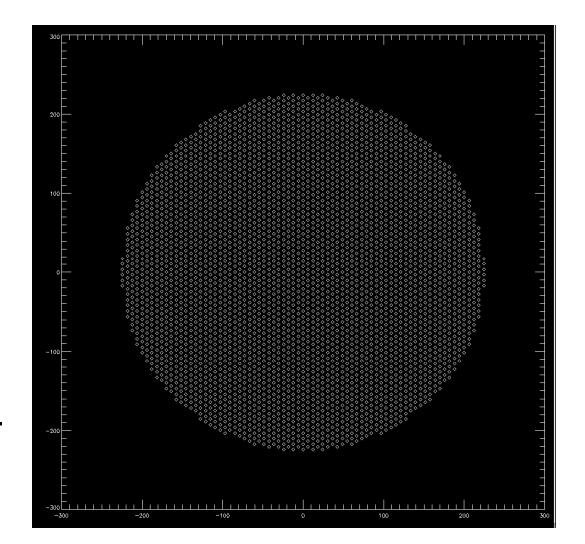

M. Seiffert (JPL) presentation at P.U. 11/09

Fiber

Patrol Radius



# Example "Tilting Spines"

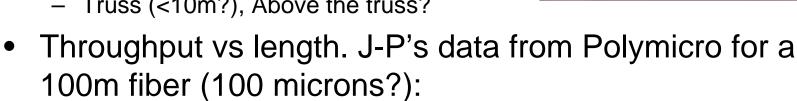



- Echidna: an Australian marsupial with flexible spines
- Also an operating fiberpositioner from AAT with ~400 fibers.
- Spines pivot from mounts near the bases
- Naturally handles a varying target density because the tips are small. Min. sep. < 0.7 mm</li>
- configuration time can be taken to < 60s (W.S.)</li>



## # Fibers & "Pitch"

- Distance between centers of the positioners == "pitch"
- Here we show 3781 positions on a FP with R=22.554 mm using a 7 mm pitch.
- If pitch was 6.3 mm we get 4675 positioners on the FP.
- # fibers is a basic cost driver.







## Fiber R&D Topics

#### • F/3 is ideal for injection into fibers

- Justify fiber width
- Fibers run to where?
  - Coude Room (75m?)
  - "Plate Development Lab" (less?)
  - Horseshoe (less)
  - Truss (<10m?), Above the truss?



- <70% throughput at 500nm</li>
- ~83% throughput at 600nm
- ~96% throughput at 850nm (peak)
- Connections at FP or anywhere else cost 2-5% light?
- Backlight mechanism for fiber positioner tips!



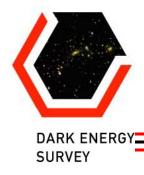
Some fiber chemistries are better

in the blue (red) than others.

11

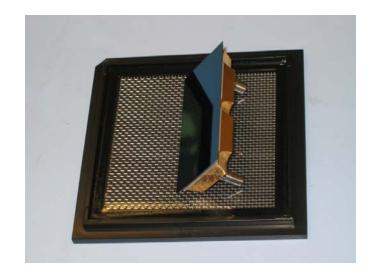


# Spectrographs


DARK ENERGY SURVEY

- There's trade offs and limitations between the following design parameters
  - wavelength range want to take advantage of the red imaging
  - spectral resolution need R >3000 at  $\lambda = 950$  nm
  - # pixels on CCD we can get the as big as 2kx4k
  - Fiber size S/N vs throughput
  - f/# of the spectrograph optics hard to make them f/1.3, easier to make them f/1.6
  - Cost

Options: 2 arm (above) 1 arm (below)


| Parameter                                     | Blue Side                | Red Side       |
|-----------------------------------------------|--------------------------|----------------|
| Fiber Diameter                                | 100 µm                   |                |
| Wavelength Range                              | 500<λ<760                | 760<λ<1050     |
| CCD                                           | E2V or DECam             | DECam 2kx4k    |
|                                               | 2kx4k                    |                |
| <b>Resolution</b> ( $\Delta\lambda$ nm/pixel) | 0.065                    | 0.0725         |
| (use 4000 pixels)                             |                          |                |
| # pixels/fiber                                | 5                        | 4              |
| Camera f/#                                    | f/2.2                    | f/1.7          |
| Spectral Resolution                           | 1923 @ 625 nm            | 3276 @ 950 nm  |
|                                               |                          | 3621 @ 1050 nm |
| Camera Type                                   | Reflective or refractive |                |

| Parameter                       | Single-Arm       |
|---------------------------------|------------------|
|                                 | Spectrograph (B) |
| Fiber Diameter                  | 80 µm            |
| Wavelength Range                | 600<λ<1000       |
| CCD                             | DECam 2kx4k      |
| <b>Resolution</b> (Δλ nm/pixel) | 0.1              |
| (use 4000 pixels)               |                  |
| # pixels/fiber                  | 3                |
| Camera f/#                      | f/1.6            |
| Spectral Resolution             | 3334 @ 1000 nm   |
| Camera Type                     | VIRUS            |



### CCDs

- DECam CCD is wellmatched to either the 1arm ccd or the red side of the 2-arm spectrograph
  - We have some spares, probably enough
- DECam CCD is not ideal for the blue side of the 2arm spectrograph
  - What are we going to do?
    A blue-sensitive LBNL device?
  - Or use a CCD vendor such as Hamamatsu or E2V?







### **CCD** Readout

- DESpec CCD readout can use DECam readout electronics, probably repackaged
- For a 2-arm spectrograph with a blue-sensitive side, we need to adapt the controller
  - Straightforward, but we don't yet know the CCD
- DECam is getting 7 e<sup>-</sup> RMS in 250 khz (17s) readout
  - Low (<0.5 e<sup>-</sup>) noise is nice but not necessary
  - Readout speed could be a little slower than DECam to get improved noise

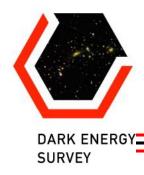




# Interchangeable w/ DECam

- To install DESPec 1<sup>st</sup> stow DECam off-telescope
  - We are providing hardware to install/remove DECam as part of that project (see right)
- Then pick up DESpec, and using similar hardware, install it on the end of the barrel.
- In reverse, either store DESpec on the telescope or produce a convenient way to connect/disconnect the fibers.

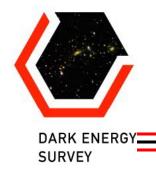



- We bring this into the design ab initio so that the process can be done quickly and easily.
- Probably .LE. 2 work days and can use f/8 in between



### Instrument Simulation I

- Model the effect on survey completeness and spectral success
- Targeting Efficiency (can we put a fiber on the galaxy?)
  - Fiber pitch
  - Patrol radius
  - Minimum fiber-tip spacing
  - # fibers needed for sky background over the FOV


- Throughput
  - Spot size vs wavelength with and w/o ADC
  - Diameter and type of optical fiber
  - Length of optical fiber and # connections
  - Effect due to the small nontelecentricity vs radius
  - Tilt-defocus (or not) from a fiber-positioner
  - Spectrographs vs wavelength



#### Instrument Simulation II

- A good instrument simulation will allow us to optimize the targeting strategy
  - Costs 60 seconds to retarget
  - CCD Readout and telescope pointing time is less than that
- Results in MORE galaxy spectra

 A good instrument simulation will allow us to simulate more science

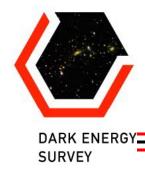


### Cost

- In July 2010 we made a top-down cost estimate based on our experience with DECam including separate estimates for
  - Management, CCDs, CCD Readout Electronics, "SISPI", optics with ADC, Fiber Positioner with Fibers, Spectrographs, Mechanical Integration, Survey Planning & Simulation
  - MIE Cost = \$39M, counting the in-kind contributions of equipment, and including 50% contingency
- We've refined this since, still including the cost of inkind contributions. It's still generally top-down
  - 2-ARM design: \$28M with ADC without contingency
  - 1-ARM design: \$22M with ADC without contingency
- Next step is to reevaluate bottoms-up and redo using actual vendor quotes. We'll see that from David Brooks.<sup>18</sup>



## Summary


DARK ENERG

- We've just done a round of science & survey requirements based on the anticipated range of technical capabilities. The result is the white paper.
  - It's not the final answer. Not yet.

#### • The present need is to

- Make a bottoms-up cost estimate.
- Identify R&D necessary to make this a technical reality as well as resources available (some R&D is underway).
- Improve the instrument simulation to allow more definitive trade studies
- & To begin to put together a consistent science -> survey -> technical requirements trail

- How do we organize this? How do we "be a Collaboration"?



# Acknowledgements

- Darren DePoy, Jennifer Marshall, J.-P Rheault,
- Steve Kent, Brenna Flaugher, Rich Kron, Anderson West, Josh Frieman, Huan Lin
- Ofer Lahav, Filipe Abdulla, Stephanie Joubert
- Matthew Colless, Guy Monnet, Will Saunders, Jon Lawrence
- Michael Seiffert, Richard Ellis
- David Schlegel
- Gary Poczulp