

DESpec Optics

DARK ENERGY SURVEY

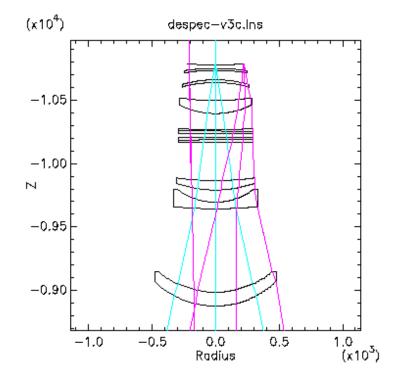
- I. Recap of Requirements
 - Wavelength range
 - PSF Size
 - Optimal Fiber diameter
 - Zenith Angle
 - Wavelength resolution
- II. Updated Optical Designs
 - To "ADC" or not to "ADC"
 - that is the question.
- III. Additional Issues
- IV. 1-arm design
- V. Summary

Steve Kent (FNAL)

1

Recap of Notional Requirements

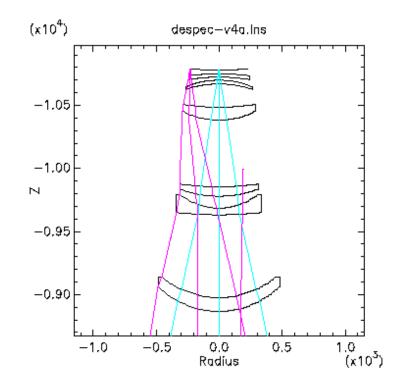
- Wavelength range
 - λ = 0.55 1.0 complete ELG redshift coverage z = 0.0-1.7 (H α or [OII])
- Wavelength (2-pixel) resolution
 - R > 3000 @ 1.0µ Partially resolve OH night sky forest
 - (> 50% "clear space" between OH lines with 3A rest-frame minimum window)
- Airmass
 - sec(z) <= 1.4 (SDSS plate statistics)</pre>
 - But new DES footprint may alter!
- Acceptable Fiber size
 - 1.5" 2.2" for mag(i) = 22-24
- PSF
 - FWHM < 0.6" (constraint of reusing existing corrector)



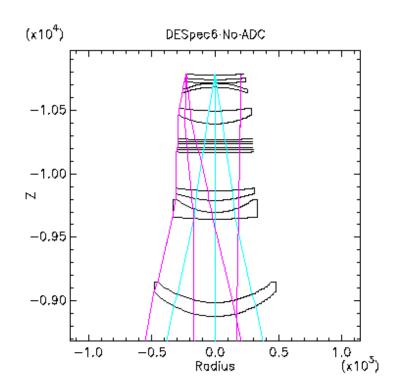
despec-v3c ADC

DARK ENERGY SURVEY

• Features

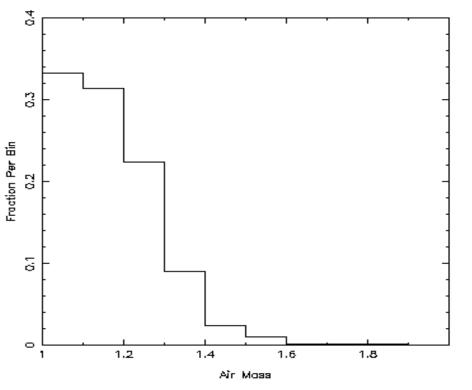

- ADC with 2 powered surfaces
- C5 => C5' + C6
- C5' has 8th order asphere
- 6 new glass elements total
- FWHM (zenith configuration)
 - 0.57" RMS
- λ range 0.50-1.08 μ
- Nearly telecentric (max. tilt 0.44°).
- Limitations
 - ADC powered surfaces may be difficult
 - Lenses thin (like SDSS)

despec-v4a


- Features
 - 2 new lenses total
 - C5 -> C5' (FK5)+ C6 (BK7)
 - Filter not used
 - $-\lambda$ range 0.50-1.08 μ
 - FWHM (zenith config)
 - 0.55" RMS
 - Nearly telecentric (max. tilt 0.51°).
- Limitation
 - No ADC
 - FWHM increases to 0.79" at sec(z) = 1.6
 - (0.69" for λ = 0.6 1.0 μ)

despec6

- Will Saunders design
- Features
 - Aspheric focal plane
 - ADC in or out with same C5, C6
 - Improved wavelength range λ = 0.4 - 1.05 μ (NO ADC ONLY)
 - FWHM (zenith config)
 - 0.60" RMS
 - Very telecentric (max. tilt 0.2°).
- Limitation
 - No-ADC FWHM increases to 1.2" at sec(z) = 1.6



SDSS Plate Coverage

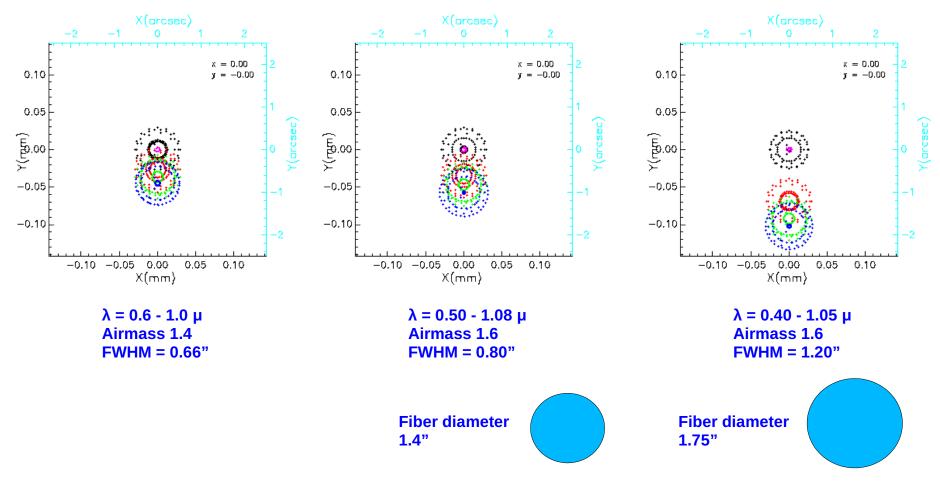
DARK ENERGY SURVEY

Air Mass Distribution of SDSS Plates

SDSS is an existing spectroscopic survey of ~10,000 sq. deg. All plates (2880) airmass distribution 3% have sec(z) > 1.4

Steve Kent (FNAL)

DES Sec(z) Coverage

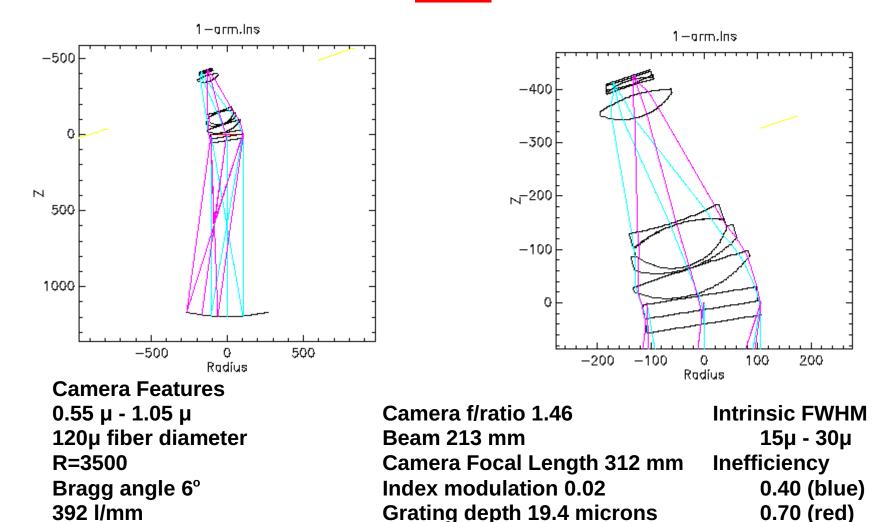


Latest DES footprint has significant number of fields that are observed at sec(z) > 1.3. Spectroscopic survey may have similar distribution.

Atmospheric Dispersion

DARK ENERGY SURVEY

KICP DESpec Meeting (May 31, 2012)


Additional Issues for Wide-Field Spectroscopy

- DARK ENERGY SURVEY
 - Time-dependent distortions across field worse at high airmass
 - Polar axis misalignment (field rotation)
 - Community science
 - SMC: $\delta = -75^{\circ}$ sec(z) = 1.4@meridian; 1.6@ ha=4 hrs
 - May require short exposures with fiber position adjustment to deal with 1st two effects

- Simulation of spectra to better pin down desired R of spectra (assume FWHM > 2.25 pixels)
 - Is resolution of OII doublet essential?
- Minimum acceptable λ range (e.g., H α and/or OII to cover z = 0 1.7)
- Optimization Studies
 - Spines v. twirling posts => spines have greater reach but suffer from tilt
- Spectrographs
 - What is POSSIBLE with an all-refractive design?
 - Same for reflective design
 - VPH grating feasibility

Design for 1-armed Refractive Spectrograph

Steve Kent (FNAL)

KICP DESpec Meeting (May 31, 2012)

Summary

- Two limiting cases (not mutually exclusive)
 - Minimal
 - 1-armed spectrograph
 - Small fibers (1.4" diameter)
 - Wavelength 0.6 -1.0 μ => gap in redshift coverage
 - Sec(z) < 1.4 (No ADC) => 5,000 sq. deg. survey
 - Maximal
 - 2-armed spectrograph
 - Big fibers (1.7" diameter)
 - Wavelength 0.5-1.05 μ => no gap, go to higher z => bigger volume
 - No limit on sec(z) (ADC) => 15,000 sq. deg. survey
- Additional Considerations
 - no-ADC and ADC designs are interchangeable, so ADC comes later (but may be strategically undesirable).
 - Larger FOV tolerate vignetting. Reaches 50% @ r = 250 mm Steve Kent (FNAL) - tolerate vignetting. (May 31, 2012)

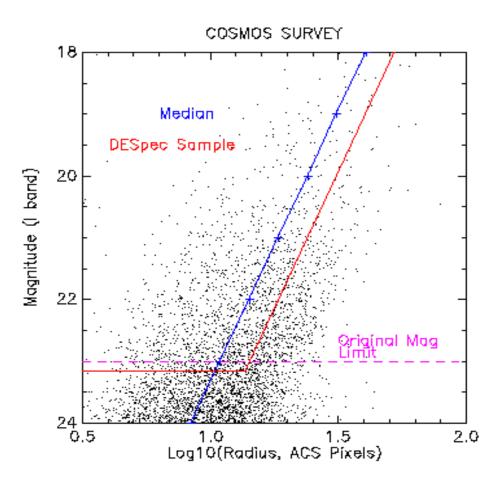
DARK ENERGY

Target Selection Strategy

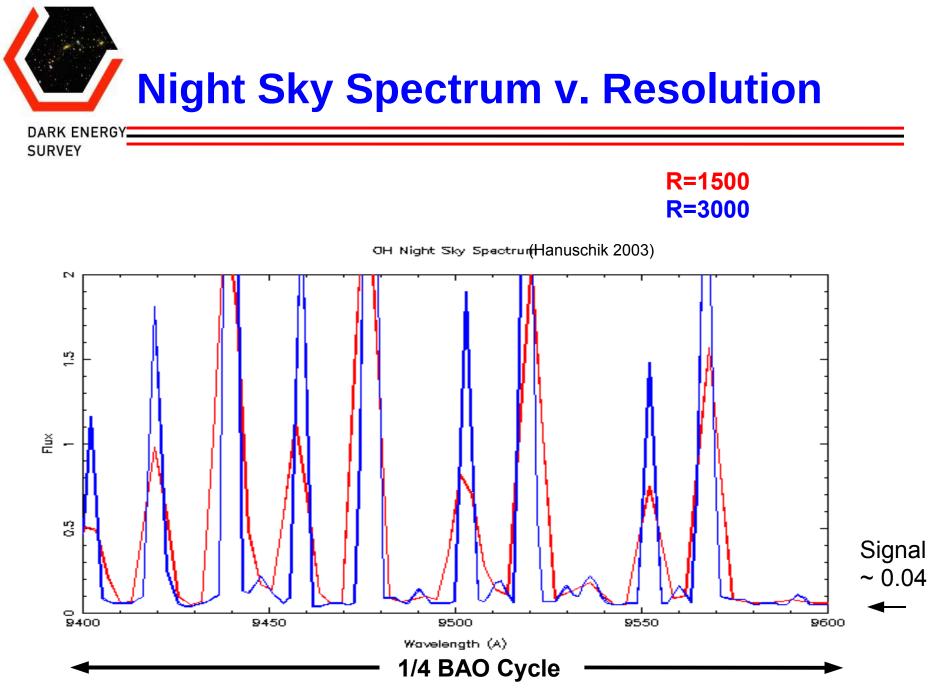
DARK ENERGY SURVEY

• A) Select mag = m_{IIM} that achieves proper galaxy density

- m_{LIM} \approx 23


- B) Go fainter by Δm and select galaxies with r < r_{CRIT} such that density is unchanged. We expose to reach S/N = (S/N)_{CRIT} for m = $m_{LIM} + \Delta m$, r = r_{CRIT}
- C) For each Δm , compute rate for collecting redshifts v. $r_{_{FIBER}}$
- D) Pick Δm , r_{FIBER} that maximizes rate.
 - $-\Delta m = 0.15$
 - r_{FIBER} = 0.85" to 0.9 " (diameter = 1.7" to 1.8")
 - We exclude ~ 30% of galaxies with $r_{1/2} > 0.41''$
- NOTE: Rate changes slowly as we move away from optimal
 - e.g., rate declines by 5% at r_{FIBER} = 0.73" (BigBOSS value)

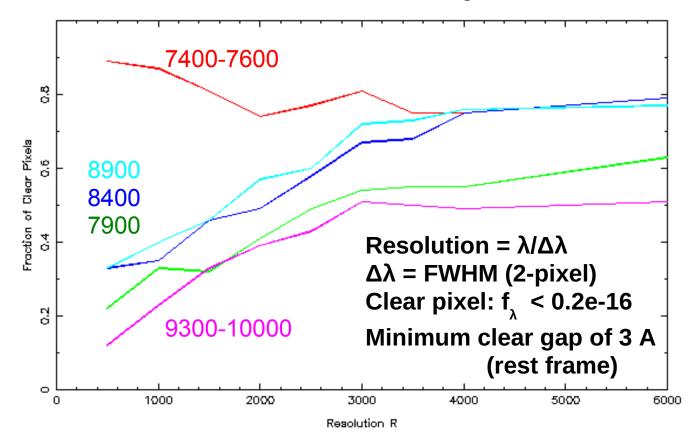
Steve Kent (FNAL)


Radius-Mag Relation

DARK ENERGY SURVEY

Steve Kent (FNAL)

KICP DESpec Meeting (May 31, 2012)


KICP DESpec Meeting

Steve Kent (FNAL)

(May 31, 2012)

Clear Pixels v. Resolution and Wavelength

