

The DESpec spectrographs as an evolution of VIRUS, the HETDEX spectrographs

-Eberly Telescope Dark Energy Experiment

Jennifer Marshall Texas A&M University

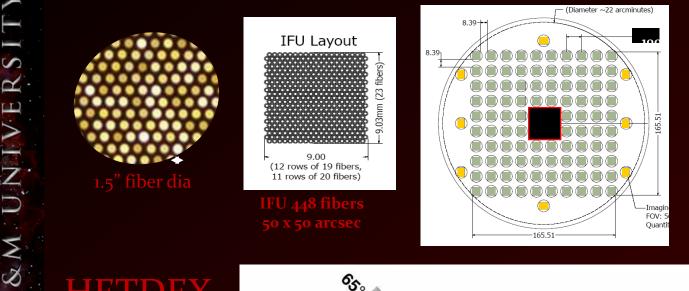
May 31, 2012

Munnerlyn Astronomical Instrumentation Lab Texas A&M University

GMT

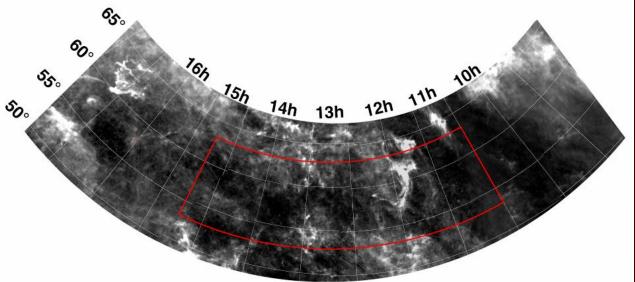
Texas A&M University Department of Physics and Astronomy is an institutional member of:

Illuminating the Darkness


HETDEX science goals

- Hobby-Eberly Telescope Dark Energy Experiment
 - Constrain expansion history over 1.9 < z < 3.5
 - Direct detection of dark energy at z~2.5 even if it's a cosmological constant
 - 0.1% constraint on curvature
 - Determine whether dark energy evolves with time
- Tracers are Ly-α emitting galaxies
 - Numerous, easily detected with integral field spectrograph

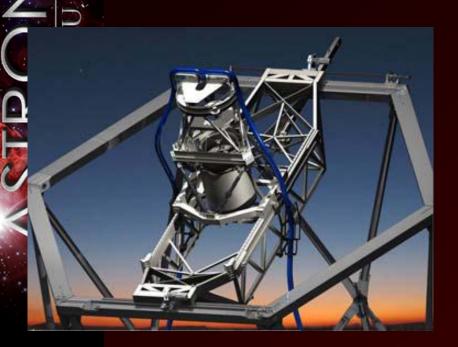
HETDEX observing plan

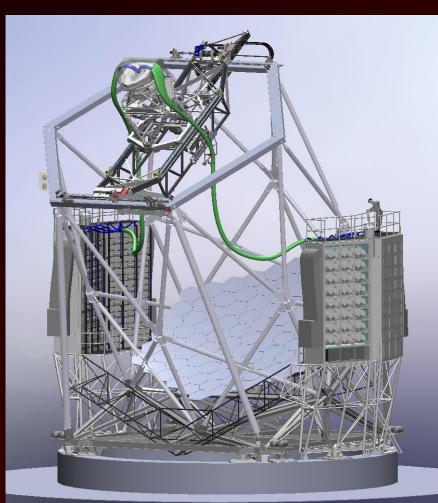

- Blind survey with 150+ integral field spectrographs, known as VIRUS
 - 33,600 spectra per exposure
 - 350 550 nm
 - Line flux limit 3.5e-17 and m_{AB}~22
- 420 sq. deg. area survey will contain spectroscopy of:
 - 0.8 million LAEs in 9 cubic Gpc volume 1.9 < z < 3.5
 - 1 million [OII] emitters z < 0.48
 - 0.4 million other galaxies
 - 0.25 million stars
 - 2000 galaxy clusters
 - 7000 QSOs z < 3.5
 - 20,000 NVSS radio sources

HETDEX observing plan

22 arcmin
field of view
33,600
spectra at a
time

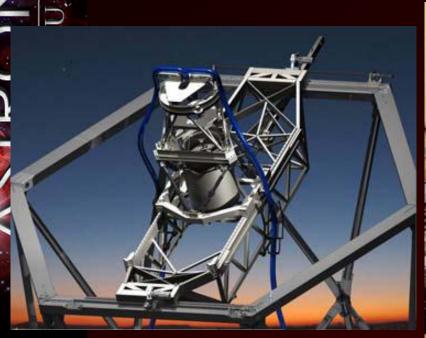
HETDEX Survey covers 420 square degrees

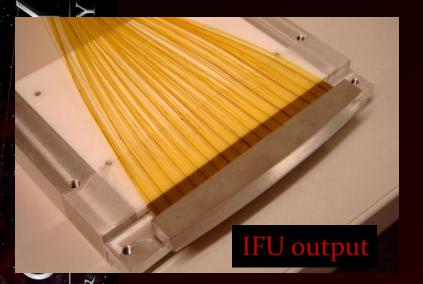


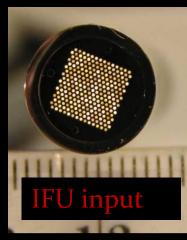

HETDEX is:

- Major telescope upgrade
 - Replace entire top end of telescope
- New instrument, VIRUS
 - 150+ fiber-fed unit spectrographs
- HETDEX survey observations
 - Software/data analysis
 - Data will be public

Telescope upgrade

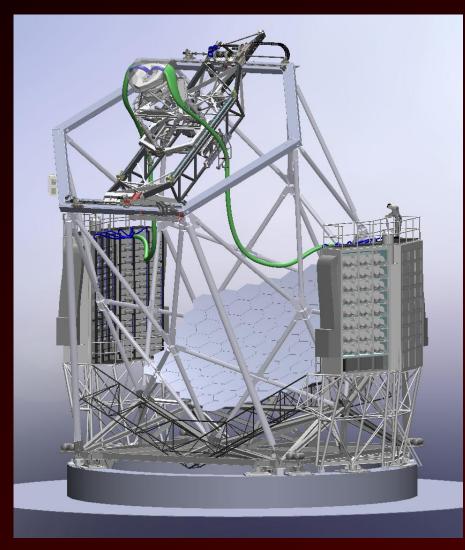

• Wide Field Upgrade of HET to 22 arcmin FoV and 10 m pupil


Telescope upgrade


• Wide Field Upgrade of HET to 22 arcmin FoV and 10 m pupil

Fiber bundles

Nine IFUs have been built by AIP and delivered to UT for testing

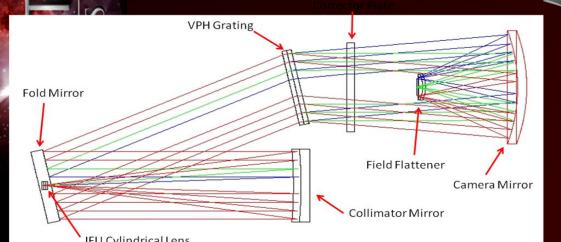


Kelz et al., 2006, SPIE 6273-121;

Murphy et al., 2008, SPIE 7018-104; Soukup et al., 2010, SPIE 7735-180

VIRUS

- Visible Integral-field Replicable Unit Spectrograph (VIRUS)
 - The first highlyreplicated instrument in optical astronomy
 - 150+ channel fiber-fed Integral Field
 Spectrograph placing
 >33,000 1.5" dia fibers on sky
 - 350-550 nm coverage and R~700

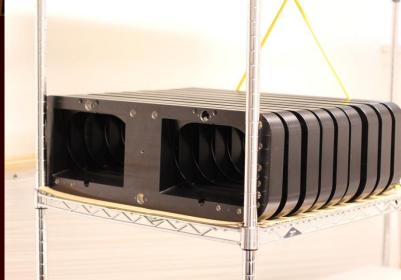


Texas A&M's role in HETDEX

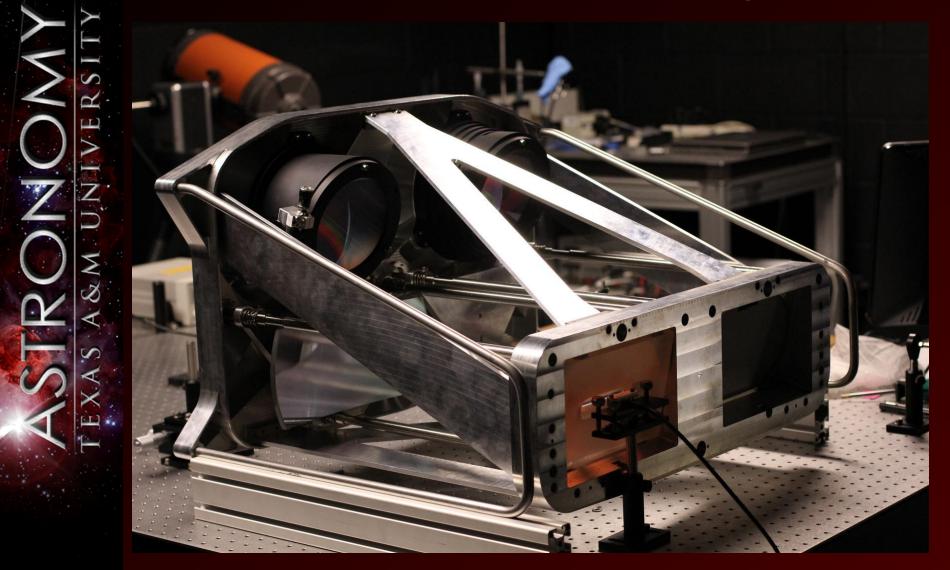
- Participate in optical and mechanical design of VIRUS
- Fabrication and procurement of VIRUS components
- Assemble VIRUS unit spectrographs
- Optically align instruments in lab
- Ship to McDonald

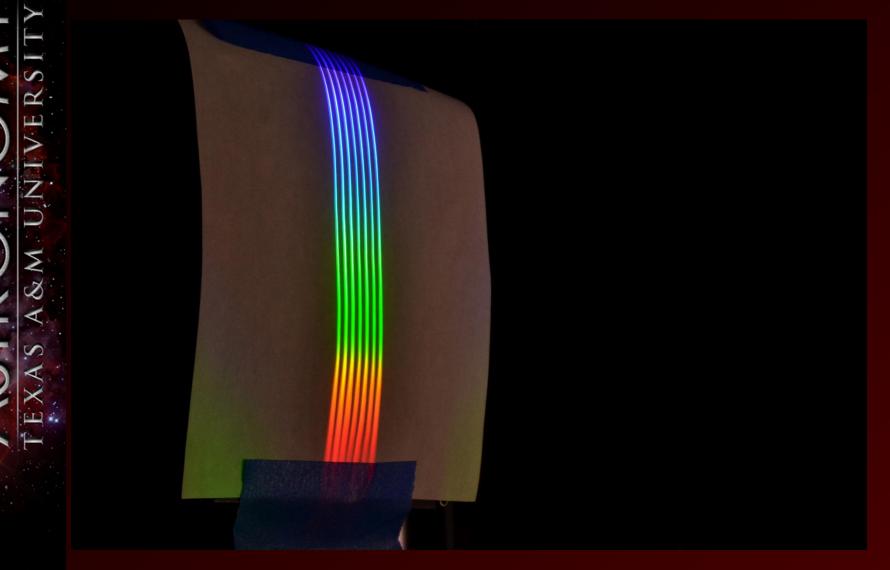
Participate in optical and mechanical design of VIRUS

- Simple design
 - Single reflection spherical collimator
 - Schmidt camera
 - Two lenses + one spherical mirror
 - VPH grating
- High throughput


Unit spectrographs packaged in pairs

Fabrication and procurement of VIRUS components

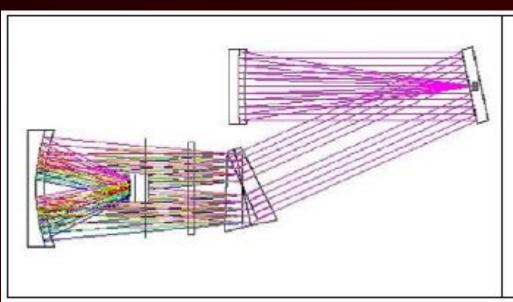




Assemble VIRUS unit spectrographs

Optically align instruments in lab

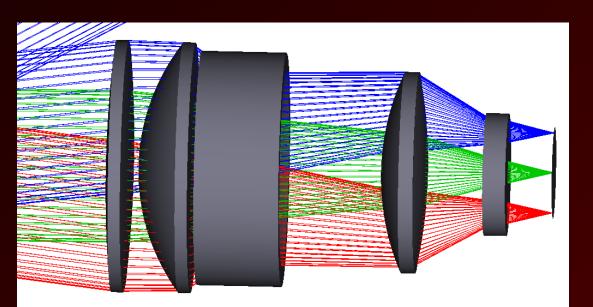
Ship to McDonald


- Telescope taken down for HETDEX installation January 2013
- First 20 spectrographs completed and shipped to telescope March 2013

Flexibility of VIRUS design

- VIRUS design is adaptable to almost any fiber-fed spectrograph system
 - Easy to change resolution, wavelength range, etc. with simple redesigns
- Has already been used as basis of new spectrograph design
 - LRS2

LRS2 concept


- LRS2 will be the first VIRUS adaptation
 - Consists of two unit pairs, LRS2-B (350 650 nm) and LRS2-R (650 – 1100 nm)
 - R~1800
- Work required for LRS2-R:
 - Replace grating with grism dispersers
 - Customize optical coatings

DESpec from VIRUS?

- Same could be done for DESpec
 - Change grating
 - Reoptimize coatings
 - Refractive camera?

DESpec unit spectrograph

- 600-1000nm coverage using DES 2Kx4K CCD
- Roughly 3 pixels per resolution element (R~3334 at 1000nm; 0.1nm/pixel dispersion)
- Refractive camera?
 - Larger detector obscures more light in a reflective design

- Final specs easily changed at this point
 - Depends on the science!

Parameter	Single-Arm Spectrograph (A)	Single-Arm Spectrograph (B)
Fiber Diameter	80 mm (1.4")	80 mm
Wavelength Range (nm)	600 <l<1000< th=""><th>550<l<950< th=""></l<950<></th></l<1000<>	550 <l<950< th=""></l<950<>
CCD	DECam 2kx4k	DECam 2kx4k
Resolution(Dl nm/pixel) (use 4000 pixels)	0.1	0.1
# pixels/fiber	3	3
Camera f/#	$f/1.6 = = (2.9^{*}45/80)$	f/1.6
Spectral Resolution	3334 @ 1000 nm	3167 @ 950 nm
Camera Type	VIRUS	VIRUS

One-arm DESpec spectrograph specs

Two-arm DESpec spectrograph specs

Parameter	Blue Side	Red Side
Fiber Diameter	100 mm (1.75")	
Wavelength Range (nm)	500 <l<760< th=""><th>760<l<1050< th=""></l<1050<></th></l<760<>	760 <l<1050< th=""></l<1050<>
CCD	E2V or DECam 2kx4k	DECam 2kx4k
Resolution(Dl nm/pixel) (use 4000 pixels)	0.065	0.0725
# pixels/fiber	5	4
Camera f/#	f/2.2	f/1.7
Spectral Resolution	1923 @ 625 nm	3276 @ 950 nm 3621 @ 1050 nm
Camera Type	Reflective or refractive	

Estimated cost of DESpec spectrographs

- Need ~10 unit spectrographs
 - ~4000 fibers in focal plane
 - ~400 fibers per unit spectrograph
- VIRUS unit cost is ~\$100K
 - Without detector systems
- Total cost for DESpec unit spectrographs after redesign not expected to exceed \$200K

• Total cost: \$2M

Summary

- VIRUS design could be easily and relatively cheaply adapted to DESpec spectrographs
- Would need ~10 spectrographs
- Cost ~\$2M
- 3-4 years of effort in redesign and assembly