Monojet searches for simplified models of dark matter: The Z' portal case

Haipeng An Perimeter Institute

In collaboration with Xiangdong Ji, Ran Huo and Liantao Wang

1202.2894, 1212.2221

Motivations

Outline

- Why we need UV complete models
- Monojet + MET constraint on the Z' model
- Broad resonance case
- Dijet search

Motivations

• For low mass dark matter, $M_D \sim \mathcal{O}(10)$ GeV $\mathcal{O} = \frac{1}{\Lambda^2} \bar{\chi}_D \chi_D \bar{\psi}_{SM} \psi_{SM}$

.

Monojet + MET process

Goodman, Ibe, Rajaraman, Shepherd, Tait, Yu (2010); Bai, Fox, Harnik (2010); Shoemaker, Vecchi, (2011);

CMS-PAS-EXO-12-048 (8 TeV, 19.5 fb⁻¹) ATLAS-CONF-2012-147 (8TeV, 10 fb⁻¹) CDF, PRL101 (2008)181602 (1.96 TeV, 1 fb⁻¹) Shalhout, Schwartz, Erbacher, Conway, Fox, Harnik, Bai, CDF Note 10709 (1.96 TeV, 6.7 fb⁻¹)

Motivations

- M < P_T and cannot be produced on shell
 - $\rightarrow \sigma \sim g^4 / P_T^2 < P_T^2 / \Lambda^4$

The constraint from effective theory is stronger.

Simple UV complete models

• S-channel mediator:

• T-channel mediator:

Simple UV complete models

Z' portal

- We consider a vector boson
 - Leptophobic
 - Universal coupling to quarks
 - The dark matter can be a Dirac spinor or Majorana spinor
- The most general Lagrangian

 $\mathcal{L} = Z'_{\mu} (g_{Z'} \bar{q} \gamma^{\mu} q + g_{Z'5} \bar{q} \gamma^{\mu} \gamma_5 q + g_D \bar{\chi} \gamma^{\mu} \chi + g_{D5} \bar{\chi} \gamma^{\mu} \gamma_5 \chi)$

Z' portal

• Direct Detection

	Operator	Structure	DM-nucleon Cross Section
O_1	$\bar{q}\gamma^{\mu}q\bar{\chi}\gamma_{\mu}\chi$	SI, MI	$\frac{9g_{Z'}^2g_D^2M_N^2M_\chi^2}{\pi M_{Z'}^4(M_N+M_\chi)^2}$
O_2	$\bar{q}\gamma^{\mu}q\bar{\chi}\gamma_{\mu}\gamma_{5}\chi$	SI, MD	$\sim v^2$
O_3	$\bar{q}\gamma^{\mu}\gamma_{5}q\bar{\chi}\gamma_{\mu}\chi$	SD, MD	$\sim v^2$
O_4	$\bar{q}\gamma^{\mu}\gamma_5 q \bar{\chi}\gamma_{\mu}\gamma_5 \chi$	SD, MI	$\frac{3g_{Z'5}^2g_{D5}^2(\Delta\Sigma)^2M_N^2M_\chi^2}{\pi M_{Z'}^4(M_N+M_\chi)^2}$

Z' portal

• Direct Detection

	Operator	Structure	DM-nucleon Cross Section
O_1	$\bar{q}\gamma^{\mu}q\bar{\chi}\gamma_{\mu}\chi$	SI, MI	$rac{9g_{Z^{\prime}}^2g_D^2M_N^2M_{\chi}^2}{\pi M_{Z^{\prime}}^4(M_N\!+\!M_{\chi})^2}$
O_2	$ar q \gamma^\mu q ar \chi \gamma_\mu \gamma_5 \chi$	SI, MD	$\sim v^2$
<i>O</i> ₃	$\bar{q}\gamma^{\mu}\gamma_{5}q\bar{\chi}\gamma_{\mu}\chi$	SD, MD	$\sim v^2$
O_4	$\bar{q}\gamma^{\mu}\gamma_5 q \bar{\chi}\gamma_{\mu}\gamma_5 \chi$	SD, MI	$\frac{3g_{Z'5}^2g_{D5}^2(\Delta\Sigma)^2M_N^2M_\chi^2}{\pi M_{Z'}^4(M_N+M_\chi)^2}$

In the case of O2, O3 and O4, since the direct detection signal is suppressed, collider constraints are much stronger if the dark matter can be produced inside the collider.

• Kinetic width:

• In the Z' model $\Gamma_{Z'} \propto N_f N_C$ with $g_{Z'}$ ~ O(1), $\Gamma_{Z'} \sim M_{Z'}$

• Kinetic width:

• Kinetic width:

Constraints

Search for Z'

- Dijet bump searches:
 - Depends only on $g_{Z'}$;
 - Not sensitive to M_D ;
 - Suffers from large QCD background, difficult to go to small mass.

Constraints

Constraints

Extend dijet search to smaller $M_{Z'}$

- For smaller $M_{Z'}$ the jets produced from Z' decay is too soft, so that the trigger efficiency is too small.
- Instead of using only dijet bump search, we trigger another hard object.

Constraints

Constraints

Summary

- In different parameter spaces, the effective theory estimation may either underestimate or overestimate the constraints on dark matter models, so it is important to consider UV complete theories.
- In the broad resonance case, it is important to use the kinetic width.
- In large M_{Z'} region, the constraint from dijet bump search is stronger than from monojet search if g_{Z'} ≈ g_D
- By triggering extra hard objects, we may be able to extend the dijet bump search to smaller $M_{Z'}$.