Fermion Portal Dark Matter

Yang Bai

University of Wisconsin-Madison

Dark Matter at the LHC @ KICP

Sept. 20, 2013

Joshua Berger at SLAC "quark portal dark matter" "lepton portal dark matter" 1308.0612 1310.xxxx

Motivation I

Dark Matter Sector

- ★ Graviton
- ★ Z boson
- ★ Higgs boson
- ★ Z', dilaton, radion ...

Motivation II

Dark Matter is important by itself and should deserve attention as much as SUSY.

Motivation II

Dark Matter is important by itself and should deserve attention as much as SUSY.

Motivation III

Weakly-interaction massive particle provides an excellent motivation

But, we should not be limited by WIMP's

Motivation III

Weakly-interaction massive particle provides an excellent motivation

But, we should not be limited by WIMP's

WIMPZILLAS

hep-ph/9810361 Kolb, Chung, Riotto

Figure 7. Dark matter may be much more massive than usually assumed, much more massive than wimpy WIMPS, perhaps in the WIMPZILLA class.

Motivation IV

Validity of EFT

talks at this workshop:

Andrea De Simone, CERN & SISSA On the validity of the EFT for DM searches at the LHC

Johanna Gramling, University of Geneva Validity of EFT interpretation of LHC Monojet results

Felix Kahlhoefer, University of Oxford <u>Theoretical uncertainties in mono-jet searches</u>

Motivation V

The SUSY searches are still relevant for many DM models

1305.6921, Cahill-Rowley, Cotta, Drlica-Wagner, Funk, Hewett, Ismail, Rizzo, Wood

Motivation V

The SUSY searches are still relevant for many DM models

Motivation V

The SUSY searches are still relevant for many DM models

Figure 3: Bino-squark coannihilation benchmark sparticle spectrum.

Fermion Portal Dark Matter

Conserving the Lorentz symmetry, at least two particles in the dark matter sector are required

a Majorana or Dirac Fermion or a scalar dark matter

Fermion Portal Dark Matter

Conserving the Lorentz symmetry, at least two particles in the dark matter sector are required

a Majorana or Dirac Fermion or a scalar dark matter

Quark Portal Dark Matter

 $\mathcal{L}_{\text{fermion}} \supset \lambda_{u_i} \phi_{u_i} \overline{\chi}_L u_R^i + \lambda_{d_i} \phi_{d_i} \overline{\chi}_L d_R^i + \text{h.c.}$

Quark Portal Dark Matter

two jets + MET

Quark Portal Dark Matter

two jets + MET

QCD and Yukawa Interference

interesting deconstructive interference region

Current Allowed Parameter Space

Majorana fermion dark matter

up-quark

up-quark

up-quark

MET Distribution in mono-jet

Lepton Portal Dark Matter

Lepton Portal Dark Matter

 $\mathcal{L}_{\text{fermion}} \supset \lambda_i \phi_i \overline{\chi}_L e_R^i$

 $\mathcal{L}_{\text{scalar}} \supset \lambda_i X \overline{\psi}_L^i e_R^i$

Lepton Portal Dark Matter

 $\mathcal{L}_{\text{fermion}} \supset \lambda_i \phi_i \overline{\chi}_L e_R^i \qquad \qquad \mathcal{L}_{\text{scalar}} \supset \lambda_i X \overline{\psi}_L^i e_R^i$

Lepton anomalous magnetic moment:

 $a_{\mu} \equiv (g-2)_{\mu}/2$

 $a_{\mu}^{\mathrm{EXP}} = (11659208.9 \pm 6.3) \times 10^{-10}$ hep-ex/0602035, Muon G-2 Collab. $a_{\mu}^{\mathrm{SM}} = (11659182.8 \pm 4.9) \times 10^{-10}$ I 105.3149, Hagiwara et. al.

$$a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{SM}} = (26.1 \pm 8.0) \times 10^{-10}$$

may need a positive contribution from new physics

Muon g-2

fermion dark matter

scalar dark matter

Collider Searches

ATLAS-CONF-2013-049

Indirect Detection

from AMS-02

Indirect Detection Constraints

[see also model-independent constraints: 1306.3983 by Bergstrom, Bringmann, Cholis, Hooper, Weniger; 1309.2570 by Ibarra, Lamperstorfer, Silk]

Complex Scalar DM

The annihilation is p-wave suppressed; the indirect detection limits are irrelevant

Another comment: lepton pt

could have a large correlation with MT2

Can we repeat the W discovery?

Volume 122B, number 1

PHYSICS LETTERS

24 February 1983

EXPERIMENTAL OBSERVATION OF ISOLATED LARGE TRANSVERSE ENERGY ELECTRONS WITH ASSOCIATED MISSING ENERGY AT \sqrt{s} = 540 GeV

UA1 Collaboration, CERN, Geneva, Switzerland

Conclusions

 More searches for simplified SUSY or non SUSY dark matter models should be performed at the LHC

 Dedicated searches in the two jets + MET and two leptons + MET channels have chances to discover the Fermion Portal Dark Matter

Thanks