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What didn’t we find at the LHC?

CMS Preliminary, 19.3fb™, 1s =8 TeV
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Things we were looking
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for were motivated by
“simple” supersymmetry or were “easy” to find.

Interesting things can still be lurked at or below a TeV:
e 3rd generation partners
e Degenerate mass spectrum

e Direct electroweak production
(sleptons, charginos, etc.)

glumo




Where should we look next?

e Evidence of Beyond the Standard Model Physics:
e Neutrino Masses

. @k Matter

e [wo general ways to look for dark matter-related
physics at the LHC:

e | ook for the decay matter “directly” via large
missing energy signatures.

e | ook for additional new particles that the
accompany the dark matter.




Supersymmetric Dark Matter

¢ Pure higgsino or wino thermal dark matter would
have masses of O(1 — 3 TeV)

o “Well-tempered” bino-higgsino constrained
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Pure Binos

e \What about neutralinos that are 100% bino?
e No annihilation channels on their own

e So they require something else around to
annihilate with.

e Squarks known to be too heavy to give a large
enough cross section for a thermal relic.




‘Light’ Sleptons

e Bino dark matter implies something like sleptons

Buckley, Hooper, and Kumar 1307.3561
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e [nterestingly, there is a maximum slepton mass that
will allow a dark matter solution




‘Light’ Sleptons

e (Going beyond the MSSM, can look at R-symmetric

supersymmetry, Ieadlng to Dlrac neutrallnos
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¢ Allows heavier slepton solutions,

but still a maximum that is
m; < 380 GeV
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‘Light’ Dark Matter

10~ 1306.2349

e Some possible signals
of dark matter with
mass O(10 GeV)

10740

e \What might this imply
for LHC searches?
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Effective Operator Interpretation

e Assume that effective operators describe the new
physics in direct & indirect detection, as well as
colliders.

e | aundry list of operators:

Name Operator Coefficient

Operator Coeflicient
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e Some of which can induce SI/SD direct detection




Effective Operator Interpretation

e Require a SI/SD operator to give CoGeNT/CDMS-Si
without violating collider, indirect detection bounds

e Only one set can do so and have a large enough
cross section to give a thermal rellc
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e (and it’s constrained v50l
by CDMSlite now)

e All other SI/SD operators
have A needed for thermal
relics ruled out. ' Moro-Everything

Ot
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e Adding additional operators « (GeV)
doesn’t work because the values of A needed for
those operators also ruled out.

Top Loop/!




Effective Operator Interpretation

e Example: fermionic dark matter giving CoGeNT/
CDMS-Si through A~*[xv"x][fv.f] (D5) operator:

e Thermal cross section too
small, so boost it via
additional eff. operators to
quarks and/or gluons
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Implications for the LHC

Assuming CoGeNT/CDMS-Si anomaly is dark
matter, what does this effective operator analysis
tell us?

Barring the single operator C1/R1, either:

o [Effective formalism not applicable (new light
particles coupling to DM at the LHC)

e Flavor violation in the DM couplings

e Additional annihilation channels to non-strongly
interacting states

At least one option leads us to suspect interesting
couplings to leptons/electroweak sector

So, how do we look for them?




Sleptons and Charginos

e Very difficult signatures at the LHC
pp = Lp plh p — (XD EXY)
pp — X1 X1 — W XDW™ X)) — (€7 vxi

e Small cross sections
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e Large backgrounds (W~ W™ and Drell-Yan)




Current Bounds

CMS Preliminary L =195 b \s =8 TeV

e Existing ATLAS and CMS 733 5% CL CLaNLO Exdusons
searches in the slepton -

channels. Sensitive to
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The Razor

How can we do better? (
¢ Original razor: make longitudinal boost to a frame
that we expect to approximate pair-production

frame.
e Originally developed for gluino/squark searches

e Hadronic events with MET
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e \What if there were particles that are clearly not
part of the new physics? (i.e. jets in EW searches)




The Super-Razor

America’s Finest News Source avcrLus  YoullLh:

@' the ONION

SPORTS BUSINESS SCIENCE/TECH ENTERTAINMENT Q search

¥4 Everything, We're Doing Five Blades

COMMENTARY - Opinion - Business * ISSUE 40+07 - Feb 18, 2004
By James M. Kilts, CEO And President, <Br>The Gillette Company

Would someone tell me how this happened? We were the LB :vanguard of shaving in this
country. The Gillette Mach3 was the razor to own. Then the other guy came out with a three-blade
razor. Were we scared? Hell, no. Because we hit back with a little thing called the Mach3Turbo.

\ That's three blades and an aloe strip. For moisture. But you know what happened next? Shut up, I'm

.b:

telling you what happened—the bastards went to four blades. Now we're standing around with our

James M. Kilts




The Super-Razorg.,

&

e Estimate boosts to both the production and decays
frames. Have to assume invisible system invariant
mass equivalent to that of the visible.
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Super-Razor Variables

e Chris Rogan has discussed the set of variables
constructed in these razor frames.
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Expeoted Bounds
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Expected Bounds

e Taking 1D slices of these exclusion regions:
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e (Clear improvement over existing techniques, for
both high masses and degenerate spectra.
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Conclusions

e |nteresting things can still lurk at the LHC
e Eveninthe 8 TeV data!
e Even supersymmetry!

e These things might even be motivated by dark
matter physics!

e Examples:

e Sub-350(ish) GeV lepton partners for generalized
bino-like thermal dark matter

o [Effective operator analysis of CoGeNT/CDMS-Si
suggestive of new physics at LHC energies.

e Non-colored states one of a limited set of
options.




Conclusions

How to look for such things?

Constraints are weak because these channels are
hard - large backgrounds, small signals, low MET

e Need to get clever.

Razor analysis: clever.

e [t's a new hammer, so I’'m going to go hit things
with it. But it can’t be the only game in town.
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