DAMIC and low mass WIMP searches

Alvaro E. Chavarria, KICP at U Chicago

Overview

- Dark matter direct detection
- Low mass WIMP controversy
- Nal results + prospects
- Ge results + prospects
- CDMS-Si results
- DAMIC

DM direct detection

- Elastic collision with atomic nuclei in ultra-low background detectors
- Energy of recoiling nucleus: few keV to tens of keV

Direct Detection

Jodi Cooley (TAUP2013) SNOWMASS 2013 Where Are We Now?

Low mass WIMPs

Why the controversy?

Experiments are sampling the tail of the recoil spectrum

- How precisely do we know the tail of the spectral shape?

Do we understand the detector backgrounds at these low rates? Especially **neutrons**

Comparisons between different targets is strongly dependent on the WIMP velocity distribution assumed

S/B separation worsens close to threshold

What to do?

- Astrophysical, experimental (esp. near threshold) and even nuclear uncertainties make comparisons between different targets very hard.
- Considering most recent experimental proposals, it seems that there is strong interest in performing experiments on the same target to check these signals.
- I will mention in some more detail the prospects for the investigation of signals in Nal, Ge and Si.

large velocity dispe

DAMA/LIBRA

Nal scintillating crystals at Gran Sasso

Observe a highly significant (9 σ) annual modulation, consistent with the "model independent DM signal" T = 0.999 ± 0.002 y and maximum ~ June 2nd ± 7 d

CoGeNT

0.44 kg Ge detector with 0.5 keV_{ee} threshold

Significant excess at low energies may be interpreted as recoil events from WIMPs

Separation between surface and bulk events by pulse right time

Juan Collar (TAUP2013)

30 days

counts /

"Straightforward analysis with bulk/surface separation (~90% SA for ~90% BR) from rise time"

"2.2 σ preference for modulation over null-hypothesis"

Near-future Ge results

- Ongoing analysis of 1.5 y of Super CDMS-Soudan data. May see results in the next months. e⁻/NR discrimination, how much lower threshold?
- TEXONO and CDEX will continue their DM search with PPC Ge detectors at CJPL.
- We may have some more information on this soon...

CDMS-Si

1.2 kg Si (11 x 106g) 35% NR acceptance

Blind analysis of 140 kg-days of Si data (8 detectors) July 2007- September 2008

• Surface (z) event rejection from pulse shapes and timing

۲

CDMS strategy

Y = E_charge/E_recoil

Julien Billard (TAUP2013)

Three events! 0.4 ± 0.3 expected

Shades of blue indicate the three separate timing cut energy ranges.

DAMIC

- Use the Si in a CCD bulk as a WIMP target.
- Very good ionization detector.
- Low electronic read out noise (~2 e⁻ = 7 eV RMS) allows for a low energy threshold.
- Position reconstruction.
- Good characterization and estimation of backgrounds.
- Aim to build a detector large enough to explore CDMS-Si result (~0.1 kg) in a ~1 year timescale.
- Fermilab, U Chicago, U Zurich, Michigan, UNAM, FIUNA, CAB.

Diffusion limited

Diffusion

Fit to the radial spread of the cluster allows us to estimate its position in z within the CCD bulk

Setup at SNOLAB

Wired CCD

Cu box with CCDs

In-situ neutron background measurement with ¹⁰B layer

Will install 2 500 µm thick CCDs this fall in SNOLAB. DAMIC100 to be deployed in current Cu vessel + shield in **Spring 2014**.

Conclusion

- We may be able to find direct evidence for DM in underground laboratories.
- Some experiments have seen an excess of events / annual modulation that could be attribute to <10 GeV WIMPs.
- Comparison between results in different targets is hard.
- The DM experimental community has proposed several projects to check these signals.
- DAMIC will test the CDMS-Si signal.

Backup Slides

Backgrounds

CCD + support

<10⁻⁴ Bq kg⁻¹ of U + Th from counting α s. α s most likely from surface contamination \longrightarrow apply polymer film on CCD surface.

³²Si at 300 day⁻¹kg⁻¹ can be vetoed by the ³²Si \rightarrow ³²P \rightarrow ³²S decay sequence with <1% loss of exposure. Similar Veto works for ²¹⁰Pb.

Typical analysis results of electronic-grade polysilicon (NAA and IR at RT) [4].

Calibration of E_r scale

Results for ionization efficiency in low E regime

SNOLAB data

Ig, 8 Mpixel CCDs 6 cm x 3 cm x 250 μm ~50 days of data 2 CCDs with full AIN and 2 with frame AIN

Raw spectrum from CCDs at SNOLAB

Low threshold data

From simulation on SNOLAB blanks and data from ²⁵²Cf source

0

0.06 0.08

0.1 0.12

0.14

0.16

0.18

Reconstructed energy / keV

0.2

0.22

Spatial distribution of final candidates <7 keV

Full data

2 frame CCDs (2g) 40 days 0.3 keV threshold 12 days 0.1 keV threshold Fiducial cut (~35% acceptance)

Spatial correlation in ⁵⁵Fe

MCNPX Simulation

- We have started a DAMIC simulation based on MCNPX.
- Given a particle source, we get energy deposits in a mesh the size of the CCD image.
- We also store the mean x, y and z positions of the deposits in the cell.
- We use this information with some noise + diffusion models to construct fake image.

Simulated βs

DAMIC full AIN spectrum

n backgrounds

Source	Collisions in 5 g x 1000 days	Ref
µ in Shield	<0.1	BX ZEPLIN
Norite rock	<0.001	COUPP
(α,n) in shield	<0.1	ZEPLIN

COUPP-4 was "dirty" (4 kg of borosilicate glass with ppm of U, piezoelectric transducers next to active volume) and it saw ~0.25 bubbles kg⁻¹d⁻¹. Even that level not a problem for us.

Geometry

Contamination

Cell	Material	Mass	²³⁸ U	²³² Th	⁴⁰ K	²¹⁰ Pb	⁶⁰ Co	Ref
Electronic Card	Teflon/PCB	105 g	100 mBq	3 mBq	35 mBq	-	-	GERDA PZ0
Cold head	Iron/Steel	4.5 kg	l ppb	5 ppb	0.3 ppm	-	25 mBq / kg	ILIAS BX
Pb block above	Pb	50.7 kg	I0 ppt	10 ppt	5 ppb	20 Bq/kg	-	EXO DoeRun
Copper vessel	Cu	29.5 kg	I0 ppt	10 ppt	5 ppb	-	0.6 mBq / kg	exo, ds zeplin
Pb shield	Pb	4.94 ton	I0 ppt	10 ppt	5 ppb	20 Bq/kg	-	EXO DoeRun
Poly shield	(C ₂ H ₄) _n	4.57 ton	5 ppb	5 ppb	5 ppm	-	-	ILIAS

Black - upper limits Blue - characteristic values

Number of collisions from γ s in a 5 g of Si in 1000 days

Cell	Material	Mass	²³⁸ U	²³² Th	⁴⁰ K	²¹⁰ Pb	⁶⁰ Co	Ref
Electronic Card	Teflon/PCB	105 g	<0.26	0.005	<0.09	-	-	GERDA PZ0
Cold head	Iron/Steel	4.5 kg	<0.14	0.078	0.11	-	<0.29	ILIAS BX
Pb block above	Pb	50.7 kg	20.3	4.44	2.65	21.2	-	EXO DoeRun
Copper vessel	Cu	29.5 kg	64.8	14.7	8.34	-	291	EXO, DS ZEPLIN
Pb shield	Pb	4.94 ton	120.6	26.16	15.84	129.8	-	EXO DoeRun
Poly shield	(C ₂ H ₄) _n	4.57 ton	0.74	0.95	<0.6	-	-	ILIAS
Rock	Norite	a lot			3.6			COUPP

Shielding good enough so that the main background contribution is from the shielding itself.

Thermal neutron capture

CCD activation at a proton beam

CCD spectrum 60 days after 10^{10} protons cm⁻² exposure

In-situ neutron background estimate

Slides into Cu box at SNOLAB

Test performed at FNAL this summer

Nucl.Instrum.Meth. A665 (2011) 90-93

Lowering the noise: Low Frequency Noise Reduction

- There is some low frequency tendency that has a significant effect in the pixel error.
- This slow variation are estimated for each pixel using Least Square Fitting.

Lowering the noise: Low Frequency Noise Reduction

Lowering the noise: Skipper CCD

- Main difference: the CCD allows multiple sampling of the same pixel without corrupting the charge packet.
- The final pixel value is the average of the samples **Pixel value** = $\frac{1}{N} \Sigma_{i}^{N}$ (pixel sample)_i

