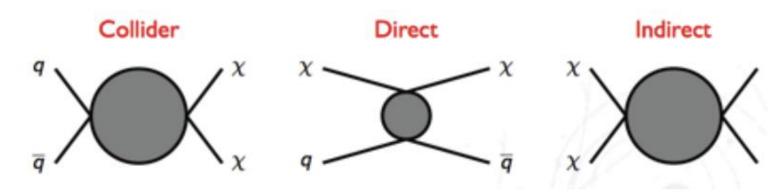
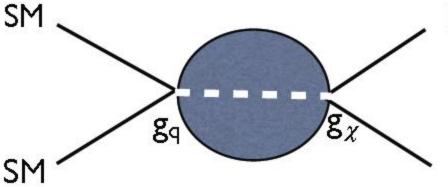


Rresults from a search for Dark Matter production in the CMS experiment with monophotons


Outline

- Introduction
- CMS detector
- Analysis details
 - ➤ Triggers
 - >Event selection
 - ➤ Background modeling
- Dark Matter samples
- **\$Limits**
- **❖**Summary

Dark Matter


- **❖**There is strong astrophysical evidence for the existence of dark matter
 - Evidence from bullet cluster, gravitational lensing, rotation curves
- **❖**Direct detection experiments
 - > Aim to observe recoil of dark matter off nucleus
 - > Excesses observed by several experiments
- > Need for independent verification from non-astrophysical experiments
 - ✓ Low mass region not accessible to direct detection experiments
 - ✓ Limited by threshold effects, energy scale, backgrounds; less sensitive to spin-dependent couplings

Colliders provide alternative, complementary way to search for dark matter

Production of Dark Matter at colliders

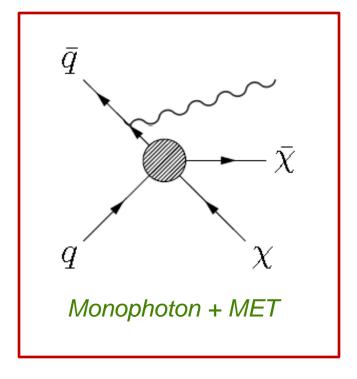
- \Box In framework of effective theory, assume DM(χ) is a Dirac fermion and interaction is characterized by *contact interaction*
 - > Set mass of mediator (M) to very high value

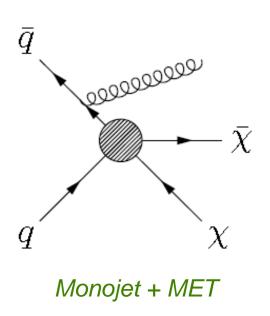
DM

√heavy mediator can be integrated out

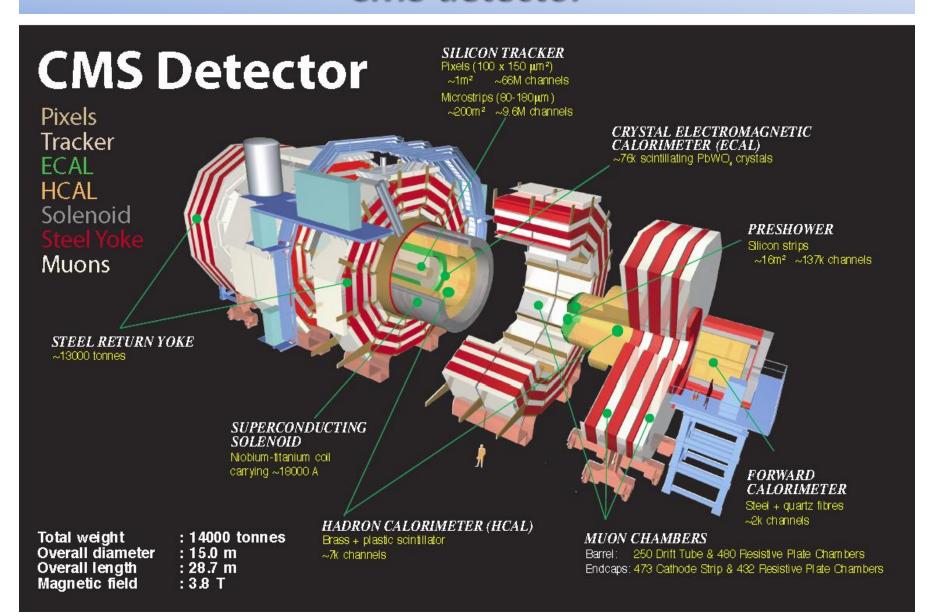
$$\Lambda = M/\sqrt{g_{\chi}g_q}$$

- Consider two possibilities:
 - a) Vector mediator:
 - Spin dependent
 - b) Axial-Vector mediator:
 - Spin independent

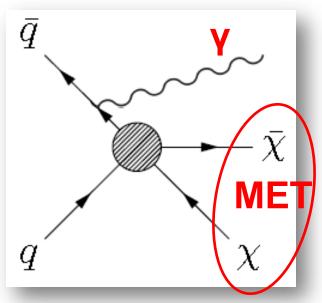

Effective operators


$$\mathcal{O}_V = rac{(ar{\chi}\gamma_\mu\chi)(ar{q}\gamma^\mu q)}{\Lambda^2}$$

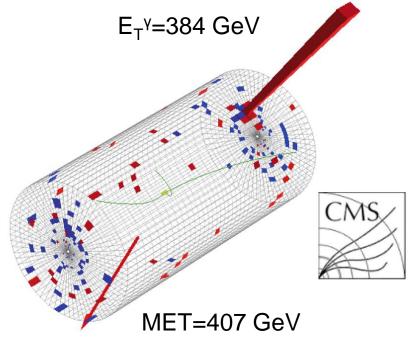
$$\mathcal{O}_{AV} = rac{(ar{\chi}\gamma_{\mu}\gamma_{5}\chi)(ar{q}\gamma^{\mu}\gamma_{5}q)}{\Lambda^{2}}$$


Production of Dark Matter at colliders

- ☐ Dark Matter production results in missing transverse energy (MET)
- ☐ Photons (or jets from a gluon) can be radiated from quarks➤ monophoton (or monojet) plus MET

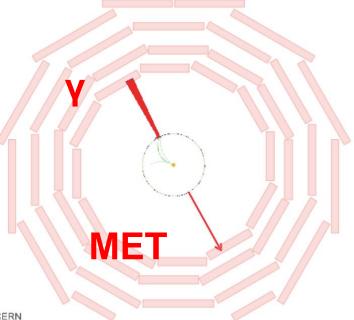


CMS detector


Monophoton-Search Details

- ☐ Require a **photon** in the event :
 - \checkmark High energy photon: E_T(γ) > 145 GeV/c
 - ✓ In the central part of the detector: $|\eta|$ < 1.442
 - √ Veto events with nearby tracks or pixel stubs
 - ✓ Veto events with significant electromagnetic calorimeter activity ($\Delta R < 0.4$)
 - ✓ Veto events with significant hadronic activity ($\Delta R < 0.4$, Ehcal/Eecal< 0.05)
 - ✓ Shower shape consistent with photon: $\sigma_{i\eta i\eta}$ < 0.013
 - ✓ All reconstructed vertices are used for isolation calculations.
- MET > 130 GeV, using a particle flow method
- ☐ Remove events with excessive additional activity
 - ✓ No central jet: veto events with $p_T(jet) > 40$ GeV/c and $|\eta_{iet}| < 3.0$
 - ✓ No tracks with $p_T > 20$ GeV/c
 - □ Data is collected using single photon trigger \triangleright E_T > 135 GeV(or less)

Monophoton- Event Display



Event with the highest photon E_T

CMS Experiment at LHC, CERN Data recorded: Sun Apr 24 22:57:52 2011 CDT Run/Event: 163374 / 314736281 Lumi section: 604

> ❖Visible signal in only one subdetector system

challenging measurement

CMS Experiment at LHC, CERN Data recorded: Sun Apr 24 22:57:52 2011 CDT Run/Event: 163374 / 314736281 Lumi section: 604

Monophoton - Backgrounds

The procedure consists of estimating expected number of events from SM processes (and other backgrounds) and look for excess of events.

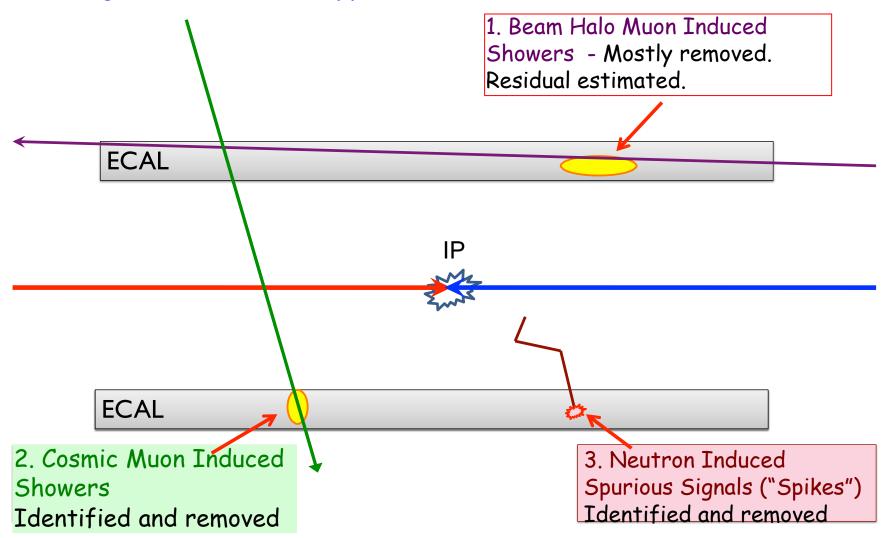
- > Counting Experiment
- ❖ Backgrounds estimated from data-driven(DD) techniques and MC
- ☐ Backgrounds from *pp collisions*

$$pp \rightarrow Z \gamma \rightarrow vv \gamma$$

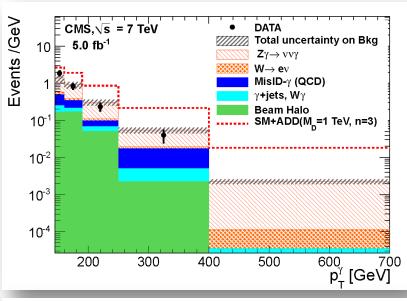
$$pp \rightarrow W \rightarrow e v$$

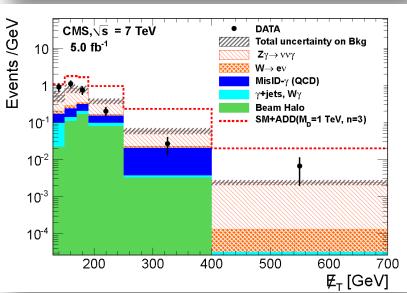
$$pp \rightarrow jets \rightarrow "\gamma" + MET$$

$$pp \rightarrow \gamma + jet$$


$$pp \rightarrow W \gamma \rightarrow l v \gamma$$

$$pp \rightarrow \gamma \gamma$$


irreducible background (MC, NLO BAUR)
electron mis-identified as photon (DD)
one jet mimics photon, MET from jet mismeasurement (DD)
MET from jet mis-measurement (MC)
charged lepton escapes detection(MC)
one photon is mis-measured - gives MET(MC)


Monophoton – Backgrounds (cont.)

❖ Backgrounds unrelated to pp collisions

Monophoton - Search Results

Source	Estimate	
Jet Mimics Photon	11.2 ± 2.8	
Beam Halo	11.1 ± 5.6	
Electron Mimics Photon	3.5 ± 1.5	
$W\gamma$	3.0 ± 1.0	
γ+jet	0.5 ± 0.2	
$\gamma\gamma$	0.6 ± 0.3	
$Z(uar{ u})\gamma$	45.3 ± 6.9	
Total Background	75.1 ± 9.5	
Total Observed Candidates	73	

Background processes describe the data well and no excess is observed.

Monophoton - Dark Matter Signal

❖ Signal Generation

- > Dark Matter model follows effective theory outlined in earlier slide
- \triangleright Madgraph4 + Pythia6 generation with 10 TeV mediator mass and assume cross section scales as Λ^{-4} . Photon ET > 125, $|\eta|$ < 1.5.
- > Similar sensitivity to spin-dependent and spin-independent

* Acceptance times efficiency for Dark Matter signal

- \triangleright A \times $\epsilon \approx 0.3$, for both vector operator and axial-vector operator
- > Kinematics mainly from ISR photon; A × ϵ is fairly constant in the range m_χ = 1-1000 GeV

❖ Systematic uncertainties

Stats. Uncertainty	1.7%
Photon ET uncertainty	2.3%
Jet Energy Scale	1.2%
MET modeling	0.5%
Pile-up modeling	2.4%
Jet veto modeling	10 %

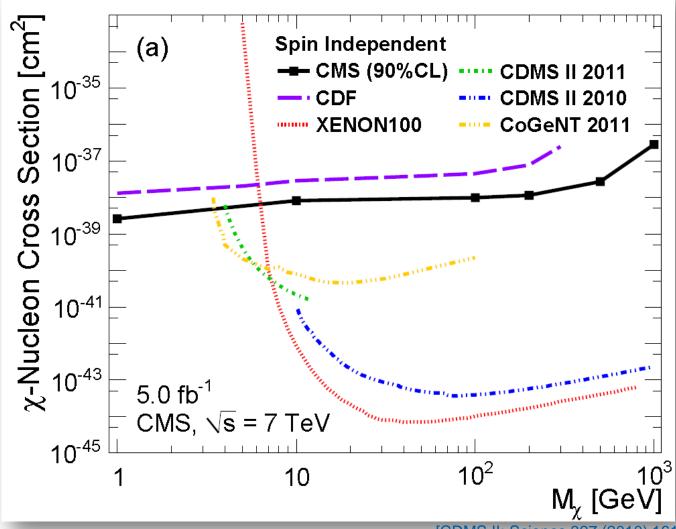
Monophoton - limit setting

Limit-setting

- Use Modified Frequentist CLs approach of PDG [J. Phys. G37 (2010) 075021].
- For an integrated luminosity of 5.0 fb^{-1} : 75.1 \pm 9.5 expected and 73 observed
- 90% CL limits shown below, "expected" limits in parenthesis (95% also available)

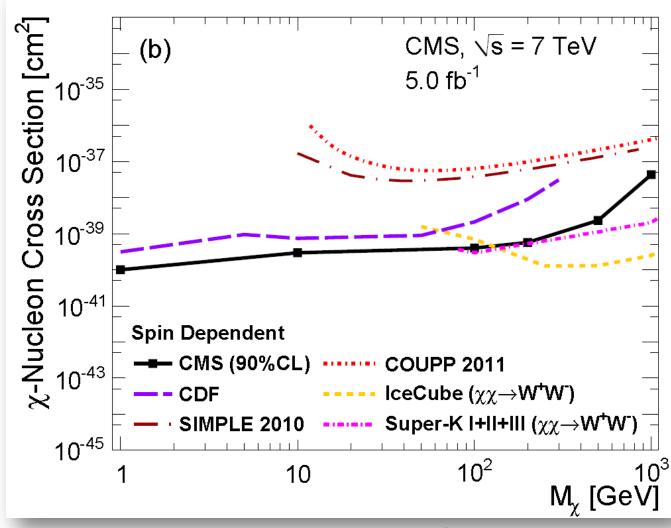
***** Extraction of χ-nucleon cross section

- Upper limits on cross sections give lower limits on the scale Λ , assuming a Λ^{-4} behavior
- The lower limits on Λ are then used to calculate the χ -nucleon cross section limits versus DM


$$\sigma_{SI} = 9 \frac{\mu^2}{\pi \Lambda^4}$$
 $\sigma_{SD} = 0.33 \frac{\mu^2}{\pi \Lambda^4}$ where $\mu = \frac{m_\chi m_p}{m_\chi + m_p}$

[Bai, Fox and Harnik, JHEP 1012:048(2010)]

M_{χ} [GeV]	Vector		Axial-Vector	
	σ [fb]	$\Lambda \ [{ m GeV}]$	σ [fb]	Λ [GeV]
1	14.3 (14.7)	572 (568)	14.9 (15.4)	565 (561)
10	14.3 (14.7)	571 (567)	14.1 (14.5)	573 (569)
100	$15.4\ (15.3)$	558 (558)	13.9(14.3)	554 (550)
200	14.3 (14.7)	549 (545)	14.0 (14.5)	508 (504)
500	13.6 (14.0)	442 (439)	13.7(14.1)	358 (356)
1000	14.1 (14.5)	246(244)	13.9 (14.3)	172 (171)


Observed(expected) 90% CL upper limits on the DM production cross section σ , and 90% CL lower limits on the cutoff scale Λ for vector and axial-vector operators as a function of the dark matter mass M_{ν}

Monophoton - spin-independent limits

[CDMS II: Science 327 (2010) 1619] [CDMS II: Phys. Rev. Lett. 106 (2011) 131302] [XENON100: Phys. Rev. Lett 17 (2011) 131302] [CoGeNT: Phys. Rev. Lett. 106 (2011) 131301]

Monophoton - spin-dependent limits

[IceCube: PhysRevD. 85.042002]

[Super-K: Astrophys. J. 742 (2011) 78]

[SIMPLE: Phys. Rev. Lett. 105 (2010) 211301] [COUPP: Phys. Rev. Lett. 106 (2011) 021303]

Summary

- ❖ Presented searches for Dark Matter in monophoton channels using 5.0 fb⁻¹ of data at 7 TeV.
- ❖ Predictions for SM background consistent with observed data, no excess found. Limits are set on Dark Matter production, resulting in a significant extension of previously excluded parameter space:
- For spin-independent models, are obtained limits for low mass DM, below 3.4 GeV, a region as yet unexplored by the direct-detection experiments.
- For spin-dependent models, limits represent more stringent over entire 1-80 GeV mass, w.r.t. the direct-detection experiments.

<u>References:</u> 10.1103/PhysRevLett.108.261803 or EXO-11-096 (monophoton) at https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO

