

"Dark Matter at the LHC" Chicago, 19.09.2013

Validity of the EFT interpretation of Monojet results at the LHC

Johanna Gramling

University of Geneva

johanna.gramling@cern.ch

Outline

- Motivation to use EFT
- Conditions of Validity for an EFT
- Idea of this study
 - MadGraph details
 - Introduction of R_A
 - Procedure
- Comparison with analytical result
- Moving to a scenario better comparable to experimental limits
- Comparison to experimental limits
 - Loopholes? Couplings!

Many thanks to Andrea de Simone for discussions and suggestions!

Why EFT?

- Monojet (and other collider) analyses are interpreted in terms of an effective field theory (EFT)
- Idea: heavy particle mediating the interaction between SM particles and DM particles
 - Much too heavy to be produced on-shell \rightarrow can be integrated out, interaction treated as contact interaction!

- Advantage: model depends only on a few parameters
 - $m_{_{DM}}$, cut-off scale Λ or $M_{_{\star}}$
 - $\rightarrow\,$ much easier than e.g. a full SUSY model
 - Allows easy comparison to direct or indirect DM detection experiments

Conditions of EFT

1. $g_{q}, g_{\chi} < 4\pi$

• to stay in the perturbative regime

2. m_M > m_{DM}

- assuming that M can't be produced, but DM can
- Minimal constraint: $\Lambda = m_M / \sqrt{(g_q g_\gamma)} > m_M / 4\pi < m_{_{DM}} / 4\pi$

3. $m_{_{\rm M}} > Q_{_{\rm TR}}$

- assuming that M can't be produced
- Minimal constraint: $\Lambda > m_M/4\pi > Q_{TR}/4\pi$

4. $Q_{TR} > 2m_{DM}$: assuming that DM is pair-produced on-shell

- Combining 3 & 4 gives stronger constraint than 2!
 - Minimal constraint: $\Lambda > Q_{TR}/4\pi > 2m_{DM}/4\pi$

How to judge EFT Validity?

- Choice of coupling used in the following: $\sqrt{(g_a g_{\gamma})} = 1$
 - Leading to $\Lambda > Q_{TR} > 2m_{DM}$
- At LHC, Q_{TR} can be of the order of 1 TeV. The limits that can be set on Λ are of the same order or even smaller...
 - \rightarrow Validity of EFT approach questionable
- Idea: access fraction of "valid" EFT events by just comparing Q_{TR} and Λ and check, if condition is fulfilled
 - First suggested in *arXiv:1307.2253v1* by A. de Simone et al.
 - Here: not analytical, but using MadGraph simulation

MadGraph Details

- Use model implementation by T.Tait, et al. (arXiv:1008.1783v2)
 - Only two new particles: DM particle χ , Mediator M
 - χ is Dirac Fermion
 - Mediator has no propagator \rightarrow contact interaction
 - Only two parameters: $\rm m_{_{DM}}$ and $\Lambda/\rm M_{_{\star}}$
- 14 Operators possible, pick characteristic set

Name	Initial state	Туре	Operator	
D1	qq	scalar	$rac{m_q}{M_\star^3} \bar{\chi} \chi \bar{q} q$	$ = \frac{1}{M^2} \overline{\chi} \chi \overline{q} q $
D5	qq	vector	$rac{1}{M_{\star}^2}ar{\chi}\gamma^\mu\chiar{q}\gamma_\mu q$	1 V1 *
D8	qq	axial-vector	$\frac{1}{M_{\star}^2} \bar{\chi} \gamma^{\mu} \gamma^5 \chi \bar{q} \gamma_{\mu} \gamma^5 q$	
D9	qq	tensor	$\frac{1}{M_{\star}^2} \bar{\chi} \sigma^{\mu\nu} \chi \bar{q} \sigma_{\mu\nu} q$	
D11	gg	scalar	$\frac{1}{4M_{\star}^3} \bar{\chi} \chi \alpha_s (G^a_{\mu\nu})^2$	

Procedure

- Simulate events in MadGraph for different DM masses and Mediator masses (20k events for each point)
 - m_{DM}: 10, 50, 80, 100, 400, 600, 800, 1000 GeV
 - m_M: 250, 500, 1000, 1500, 2000, 2500, 3000 GeV
- Count events fulfilling or failing the condition $Q_{TR} < m_M$
 - Construct ratio R_{Λ} = valid events / all events
- Plot R_{Λ} vs. mediator mass for each DM mass
 - Fit to extract value of mediator mass for which R, is e.g. 50%
- Construct curve Λ vs m_{DM}, showing the line where R₁ is e.g. 50%

Comparison with analytical results

- Scenario: 1 gluon jet with $p_{_{\rm T}}$ above 120 GeV with $|\eta|<2$
- Good qualitative agreement, small difference
 - Keep in mind: completely different approaches
 - Differences: upper jet p_{τ} cut of 1 TeV in analytical calculation
 - Slightly different use of fitting function

Way to a more realistic scenario

Analysis

- Limits on operators D5, D8, D11
- No restriction to gluon jets
- leading jet p_{τ} above 350 GeV
- 1 or 2 jets
- Second jet within $|\eta| < 4.5$

Effect on R

- Small difference in shape when going from D1 to D5
- R, higher for all jet flavors
- R_{1} lower for higher jet p_{1}
- No effect of number of jets
- No effect of η range

Comparison with latest ATLAS results

3000

2500

2000

1500

ATLAS Limit D8

२, = 25%

R, = 50%

R _ = 75%

 $\Lambda < 2m_{DM}$

A (GeV)

- Especially bad: D11 (gluon operator)
- At $m_{_{DM}} \sim 100$ GeV limit goes down, whereas the R _ curves go up

Limiting case: $\sqrt{(g_a g_\gamma)} = 4\pi$

A (GeV)

1400

1200

1000

800

600

400

ATLAS Limit D8

 $R_{4\pi\Lambda} = 25\%$

 $R_{4\pi\Lambda} = 50\%$

 $R_{4\pi\Lambda}$ = 75%

 $\Lambda < \frac{2m_{DM}}{4\pi}$

- Limits are well above $R_{\Lambda} = 75\%!$
 - Again: most critical for D11 (gluon operator)

-
$$R_{\Lambda} = 75\%$$
 is crossed at

Summary

- EFT is very useful to interpret LHC results, e.g. from a Monojet analysis, in terms of DM production
 - Only dependent on very few parameters
 - Problem: how valid is the EFT approach at LHC energies?
- Idea to judge validity of EFT: construct R₁
 - MadGraph used to simulate events
 - For each event check, if EFT condition is fulfilled
 - Show lines of "percentage of valid events" in usual limit plots
- Comparison with ATLAS result shows
 - If couplings are taken to be one, limits are in region of 30% valid events
 - If couplings are assumed to be larger, limits are well above critical region
- Maybe interesting addition: check after showering

BACKUP

Analystical Result

• Figure 5 of *arXiv:1307.2253v1*

