

Bounds on Dark Matter Interactions with Electroweak Gauge Bosons

R. Cotta, J. Hewett, M-P Le, T. Rizzo 1210.0525

Dark Matter @LHC KICP 2013

Dark Matter EFTs

SLAC

We want to use _	(an experiment) to b	oound DM interaction	s with and (some SM particles)
to compare these	limits with those from	(another experiment)	on these same interactions.
		(another experiment)	ioke stolen from R. Cotta

Dark Matter EFTs

We want to use ______ to bound DM interactions with _____ and ____ (some SM particles)

to compare these limits with those from ______ on these same interactions.

joke stolen from R. Cotta

We want to use $\frac{2j + MET(VBF)}{\text{(an experiment)}}$ to bound DM interactions with $\frac{\gamma, Z^0, W^{\pm}}{\text{(some SM particles)}}$ and

to compare these limits with those from Observations on these same interactions.

(another experiment)

Vector Boson fusion @LHC

Cosmic Annihilation products

Why VBF?

- Probes χχ interactions with EW gauge bosons
- Relate to indirect DM searches

» However, expect weaker constraints than mono-jet signatures

Assumptions:

- Respect U(1)_{em} gauge invariance
- χ is Dirac fermion
- UV completions will result in non-trivial combinations of operators for collider subprocesses WW, ZZ, γγ, γZ
 - » Weight processes and add incoherently
 - » Assume most simple structure

Set of xxV and xxVV operators

$\overline{}$	 _	
	 $\overline{}$	
	 _	

Name	Name Expression		Vertices	Sub-Procs.	Ann.		
dim = 5:							
D5a	$ar{\chi}\chi V^{a\mu}V_{\mu}^{a}$	Λ^{-1}	$4\mathrm{pt}$	$ZZ,\!WW$	v^2		
D5b	$ar{\chi}i\gamma_5\chi V^{a\mu}V_\mu^a$	Λ^{-1}	$4\mathrm{pt}$	$ZZ,\!WW$	1		
D5c	$ar{\chi}\sigma_{\mu u}t^a\chi V^{a\mu u}$	Λ^{-1}	3/4pt	$A,\!Z,\!WW$	1		
D5d	$ar{\chi}\sigma_{\mu u}t^a\chi\widetilde{V}^{a\mu u}$	Λ^{-1}	3/4pt	$A,\!Z,\!WW$	$1 (VV), v^2 (f\bar{f})$		
dim = 6:							
D6a	$ar{\chi}\gamma_{\mu}t^aD_{ u}\chi V^{a\mu u}$	Λ^{-2}	3/4pt	$A,\!Z,\!WW$	1		
D6b	$\bar{\chi}\gamma_{\mu}\gamma_{5}t^{a}D_{ u}\chi V^{a\mu u}$	Λ^{-2}	3/4pt	A,Z,WW	$1 (VV), v^2 (f\bar{f})$		
dim = 7:							
D7a	$ar{\chi}\chi V^{\mu u}V_{\mu u}$	Λ^{-3}	$4\mathrm{pt}$	AA,AZ,ZZ,WW	v^2		
D7b	$ar{\chi}i\gamma_5\chi V^{\mu u}V_{\mu u}$	Λ^{-3}	$4\mathrm{pt}$	AA,AZ,ZZ,WW	1		
D7c	$ar{\chi}\chi V^{\mu u}\widetilde{V}_{\mu u}$	Λ^{-3}	$4\mathrm{pt}$	AA,AZ,ZZ,WW	v^2		
D7d	$ar{\chi}i\gamma_5\chi V^{\mu u}\widetilde{V}_{\mu u}$	Λ^{-3}	$4\mathrm{pt}$	AA,AZ,ZZ,WW	1		

Set of xxV and xxVV operators

SLAC

Name	Expression	Norm.	Vertices	Sub-Procs.	Ann.
dim = 5:					
D5a	$ar{\chi}\chi V^{a\mu}V_{\mu}^{a}$	Λ^{-1}	$4\mathrm{pt}$	$ZZ,\!WW$	scalar mediator
D5b	$ar{\chi}i\gamma_5\chi V^{a\mu}V_\mu^a$	Λ^{-1}	4pt	ZZ,WW pse	eudoscalar mediator
D5c	$\bar{\chi}\sigma_{\mu\nu}t^a\chi V^{a\mu u}$	Λ^{-1}	3/4pt	A,Z,WW	1
D5d	$ar{\chi}\sigma_{\mu u}t^a\chi\widetilde{V}^{a\mu u}$	Λ^{-1}	3/4pt	A,Z,WW	Dipole operators
dim = 6:					
D6a	$ar{\chi}\gamma_{\mu}t^aD_{ u}\chi V^{a\mu u}$	Λ^{-2}	3/4pt	A,Z,WW	1
D6b	$ar{\chi}\gamma_{\mu}\gamma_{5}t^{a}D_{ u}\chi V^{a\mu u}$	Λ^{-2}	3/4pt	A,Z,WW	vector mediator
dim = 7:					
D7a	$ar{\chi}\chi V^{\mu u}V_{\mu u}$	Λ^{-3}	$4\mathrm{pt}$	AA,AZ,ZZ,WW	v^2
D7b	$ar{\chi}i\gamma_5\chi V^{\mu u}V_{\mu u}$	Λ^{-3}	$4\mathrm{pt}$	AA,AZ,ZZ,WW	1
D7c	$ar{\chi}\chi V^{\mu u}\widetilde{V}_{\mu u}$	Λ^{-3}	$4\mathrm{pt}$	AA,AZ,ZZ,WW	arise @ 1-loop
D7d	$ar{\chi}i\gamma_5\chi V^{\mu u}\widetilde{V}_{\mu u}$	Λ^{-3}	$4\mathrm{pt}$	AA,AZ,ZZ,WW	1

Piggy-back on invisible Higgs studies: devise set of cuts

Eboli, Zeppenfeld: hep-ph/0009158

σ (fb)	QCD	$\overline{ ext{QCD } Zjj}$ $\overline{ ext{QCD}}$		$Wjj \mid EW Zjj \mid$		EW Wjj		Total		
0 (10)	[51]	Here	[51]	Here	[51]	Here	[51]	Here	[51]	Here
Eqs. (6-8)	1254	1055	1284	906	151	148	101	85	2790	2194
Eqs. $(6-9) + C.J.V.$	71.8	56.6	70.2	47.3	14.8	14.6	9.9	8.2	167	127

Pseudorapidity Dependence of signal and background

Validity of Effective Field Theory

SLAC

EFT is valid when:

Scattering: $M_{
m med.} > |q|, (\ll m_\chi)$ Annihilation: $\sim m_\chi$ Production: $\sim p_T$

Validity of Effective Field Theory

SLAC

EFT is valid when:

Scattering:
$$M_{
m med.} > |q|, (\ll m_\chi)$$
 Annihilation: $\sim m_\chi$ Production: $\sim p_T$

Employ partial wave analysis: $|a_0(qq \rightarrow \chi\chi)| < 1/2$

99%, 90%, 50% VBF events obey this limit

LHC VBF Results

Effects of Uncertainties on LHC Constraints

Include data from:

- Continuum γ-spectra from dwarf spheroidal galaxies for annihilation into SM final states
 - » (Fermi 10 MW dwarf spheroids data + Veritas Segue I)
- γ-ray lines for annihilations into γγ and γZ (Fermi)
 - » Assume NFW profile (bounds weaken ~30-40% w/ isothermal profile)
- Ratio of anti-proton/proton cosmic ray flux (Pamela)
 - » Assume NFW profile

Strength of indirect limits depends on velocity suppression of operator

Indirect Search Results

Indirect Search Results

Combined Constraints: D5a-d

Combined Constraints: D6-D7

- Provides complement to monjet and direct detection searches
- Interactions with EW gauge bosons probed for cut-offs in the weak-scale values, ~100's GeV to few TeV
- Relatively light dark matter requires additional structure in UV theory to avoid overclosing the universe

BACKUP

Assumed weighted combination for collider subprocesses

D5a:
$$\frac{1}{\Lambda} \bar{\chi} \chi \left(\frac{Z^{\mu} Z_{\mu}}{2} + W^{+\mu} W_{\mu}^{-} + h.c. \right)$$
D5b:
$$\frac{1}{\Lambda} \bar{\chi} i \gamma_{5} \chi \left(\frac{Z^{\mu} Z_{\mu}}{2} + W^{+\mu} W_{\mu}^{-} + h.c. \right)$$
D5c:
$$\frac{g_{w}}{\Lambda} \left(\bar{\chi} \sigma_{\mu\nu} t^{3} \chi W^{3\mu\nu} + \frac{s_{w}}{c_{w}} \frac{Y}{2} \bar{\chi} \sigma_{\mu\nu} \chi B^{\mu\nu} \right)$$
D5d:
$$\frac{g_{w}}{\Lambda} \left(\bar{\chi} \sigma_{\mu\nu} t^{3} \chi \widetilde{W}^{3\mu\nu} + \frac{s_{w}}{c_{w}} \frac{Y}{2} \bar{\chi} \sigma_{\mu\nu} \chi \widetilde{B}^{\mu\nu} \right)$$
D6a:
$$\frac{g_{w}}{\Lambda^{2}} \left(\bar{\chi} \gamma_{\mu} t^{3} D_{\nu} \chi W^{3\mu\nu} + \frac{s_{w}}{c_{w}} \frac{Y}{2} \bar{\chi} \gamma_{\mu} D_{\nu} \chi B^{\mu\nu} \right)$$
D6b:
$$\frac{g_{w}}{\Lambda^{2}} \left(\bar{\chi} \gamma_{5} \gamma_{\mu} t^{3} D_{\nu} \chi W^{3\mu\nu} + \frac{s_{w}}{c_{w}} \frac{Y}{2} \bar{\chi} \gamma_{5} \gamma_{\mu} D_{\nu} \chi B^{\mu\nu} \right)$$
D7a:
$$\frac{1}{\Lambda^{3}} \bar{\chi} \chi W^{a\mu\nu} W_{\mu\nu}^{a}$$
D7b:
$$\frac{1}{\Lambda^{3}} \bar{\chi} i \gamma_{5} \chi W^{a\mu\nu} W_{\mu\nu}^{a}$$
D7c:
$$\frac{1}{\Lambda^{3}} \bar{\chi} \chi W^{a\mu\nu} \widetilde{W}_{\mu\nu}^{a}$$
D7d:
$$\frac{1}{\Lambda^{3}} \bar{\chi} i \gamma_{5} \chi W^{a\mu\nu} \widetilde{W}_{\mu\nu}^{a}$$

D7d: