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Complementarity in SUSY

● Standard neutralino dark matter in the MSSM 
with R-parity is a flexible tool, despite not 
encompassing other interesting scenarios

● Motivates study of how well different 
approaches at DM experiments and colliders 
work together to see SUSY

● Simplified frameworks often used to estimate 
sensitivity, but useful to consider more 
complete models too, especially to solve other 
problems at the same time
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Complementarity in SUSY

● Goal: study a set of full, realistic MSSM 
spectra with neutralino LSPs, remaining 
agnostic about SUSY breaking

● Do not require LSP to saturate relic density
● Sparticle masses are scanned up to 4 TeV, 

giving LSPs from 40 GeV to ~2 TeV
● Study models at the LHC as well as current 

and future experiments searching for dark 
matter – direct detection, neutrino telescopes, 
indirect detection
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The phenomenological MSSM

● The full MSSM has 105 new free parameters, 
many of which are strongly constrained

● Impose minimal flavor violation, diagonal 
sparticle mass matrices with degenerate first 
two generations, CP conservation

● Generated random points in resulting 19-dim. 
space passing precision EW, flavor, DM 
constraints

● Produced set of ~2.2 x 105 consistent models 
in late 2011
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Neutralino LSP relic density

Bino annihilation through Z/h funnel

Bino coannihilationWell-tempered neutralino

Other annihilations

1.7 TeV wino

1 TeV Higgsino
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Direct detection

XENON1T (LUX + ZEPLIN) can exclude 23% (38%) of models
COUPP500 can exclude 2% through SD detection

XENON1T (2017)

LZ (6M kg-days)

XENON100 (2011)
XENON100 (2012)

R = Ω/Ω
WMAP
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IceCube

● LSP capture in the sun and subsequent 
annihilation produces high energy neutrinos

● Calculate ν flux for each model, because 
annihilations go to different final states

● Also need to check capture-annihilation 
equilibrium; 48% of our models do not have 
these processes balanced in the sun, typically 
giving a low ν flux!

● See 1105.1199 for more details
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IceCube

Fraction excluded by IceCube
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1.2% of models will be excluded by 5 years of IceCube data
Only sensitive to bino-Higgsino mixtures!

Pure eigenstate LSPs survive due to poor capture or annihilation

R = Ω/Ω
WMAP



   

Indirect detection

● The LSP annihilates to some mixture of the 
standard decay modes bb, WW, ττ, as well as 
others

● Calculate γ ray spectrum from annihilations for 
each model separately

● Fermi LAT two year dwarf analysis 
(1111.2604) + 10x improvement (0.1%)

● CTA with US contribution with 500 hours of 
exposure to galactic center SR (19%)
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Indirect detection

Fraction excluded by CTA
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Fermi limits

Fermi better at lower masses, CTA dominates for heavy LSP
Heavy coannihilating binos have very low annihilation cross 

sections, and won't be excluded by CTA (or LHC!)
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LHC searches

● Generate SUSY events for each model with 
PYTHIA/Prospino/PGS; codes modified!

● Input relevant MET-based SUSY searches up 
to March 2013, generally following ATLAS

● Non-MET searches also included
● Mono-X not implemented, but much less 

important than jets+MET for complete spectra
● LHC is more powerful than in minimal DM 

frameworks due to plethora of new colored 
particles



   

LHC

Strong production and phase space between LCP and LSP matters
LSP mass (GeV)
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Simplified model limits
ATLAS-CONF-2012-109
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Search complementarity

Direct and indirect detection probe distinct regions!

DD = XENON1T + COUPP500
ID = Fermi + CTA

39%
27%
8%

11%
15%R = Ω/Ω

WMAP
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14 TeV LHC projection

ATLAS (and CMS) can probe unseen models at 14 TeV

DD = XENON1T + COUPP500
ID = Fermi + CTA

+ 14 TeV jets + MET

R = Ω/Ω
WMAP

PRELIMINARY
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Search complementarity

LHC, CTA, and XENON1T act orthogonally and exclude many models

XENON1T

R = Ω/Ω
WMAP
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14 TeV LHC projection

Again, 14 TeV  jets + MET can significantly increase coverage

XENON1T

R = Ω/Ω
WMAP

PRELIMINARY
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So what's left of this?

Bino annihilation through Z/h funnel

Bino coannihilationWell-tempered neutralino

Other annihilations

1.7 TeV wino

1 TeV Higgsino
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After LHC Run I + current/future DM

Bino annihilation through Z/h funnel

Bino coannihilationWell-tempered neutralino

Other annihilations

1.7 TeV wino

1 TeV Higgsino
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Lessons learned

● The LHC can fill in many of the holes in 
coverage left by dark matter experiments, 
especially in complete theories with numerous 
new colored states

● If DM searches are fruitless, remaining 
pMSSM points that do have right relic density 
have (co)annihilating bino LSPs, to be probed 
by 14 TeV LHC

● Spin-independent direct detection, CTA, and 
the LHC are expected to be the most powerful 
searches for the pMSSM in the near future
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Backup
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The phenomenological MSSM
● 19 free parameters of the phenomenological 

MSSM

● M
1
, M

2
, M

3
, , tan , M
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, q

1,3
, u

1,3
, d

1,3
, l

1,3
, e

1,3
,
 

A
t,b,τ

● Generate random points in this parameter 
space, and test vs. experimental constraints

● Surviving points go into model set, which is 
then tested against incoming and future data
Matthew Cahill-Rowley, JoAnne Hewett, Stefan Höche, AI, Tom Rizzo, 1206.4321
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Model set generation
● 50 GeV ≤ |M

1
| ≤ 4 TeV

● 100 GeV ≤ |M
2
, μ| ≤ 4 TeV

● 400 GeV ≤ M
3
 ≤ 4 TeV

● 1 ≤ tan β ≤ 60

● 100 GeV ≤ M
A
, l, e ≤ 4 TeV

● 400 GeV ≤ q
1
, u

1
, d

1
 ≤ 4 TeV

● 200 GeV ≤ q
3
, u

3
, d

3
 ≤ 4 TeV

● |A
t,b,τ

| ≤ 4 TeV

● Generate spectra for 3 × 106 points in 19 dimensional 
parameter space, requiring lightest neutralino to be LSP

● Spectra are generated with SOFTSUSY and SuSpect, and 
tossed if there are problems (tachyons, color/charge breaking 
minima, unbounded scalar potentials) or the generators 
disagree significantly

● Decay tables are calculated with modified versions of 
SDECAY, HDECAY, MadGraph, and CalcHEP
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Model set generation

● Impose WMAP7 as upper bound on thermal relic 
density of lightest neutralino, and check against DM 
direct detection constraints

● Precision EW constraints: g – 2, invisible width of Z, 
∆ρ

● Flavor constraints: b → sγ, B
s
 → µµ, B → τν

● Require all charged sparticles > 100 GeV

● Apply LHC stable particle, Φ → ττ constraints as of 
12/2011

● 2 × 105 models left; computationally demanding!
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Indirect detection

Two year LAT analysis doesn't exclude any models

Fermi LAT

Our extrapolation
(0.1%)
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Indirect detection

CTA is sensitive to 19% of models!

CTA

Boost = <σv>
UL

 / <σv>
total



   

An aside: the Higgs mass

● This model set was generated before the 
Higgs discovery

● 20% of our models have the lighter CP-even 
Higgs weighing 126 ± 3 GeV (1206.5800)

● Generally, an MSSM Higgs this heavy requires 
either heavy stops or large stop mixing

● The LHC results for the subset of our models 
with a Higgs near 126 GeV are very similar to 
those for the full model set (1211.1981)

● All other results are completely unaffected
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LHC searches

Higgs (GeV)
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Neutralino LSP

Overall LHC search efficiency nearly completely 
independent of Higgs mass!
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Search complementarity

IceCube won't see any new models beyond 1T direct detection....

DD = XENON1T + COUPP500

77%
0%

22%
1%

R = Ω/Ω
WMAP
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