

ATLAS Monophoton Results

Mario Martínez

DARK MATTER AT THE LHC WORKSHOP CHICAGO, SEPTEMBER 2013

Outline

- Introduction/Motivation
- LHC and ATLAS
- Monophoton Search
- WIMPS
- ADD LED
- Final notes

"Particles, particles, particles."

Galaxia M33

The rotation of the starts around the center of the galaxies are not consistent with the amount of mass observed (L/M ratio)_{SUN}

19/9/13

Gravitational Lensing

Cluster de galaxias

Large distortion of the imagines of distant galaxies due to gravitation lensing → indication of DM in galaxy clusters

19/9/13

Collisions of clusters of galaxies

via X-Rays

via Gravitational Lensing

Considered the ultimate demonstration of the presence of Dark Matter since this does not involve Newton's Law

Weak scale for $\chi\chi$ annihilation cross section

19/9/13

Planck (20 March 2013) arXiv:1303.5062v1

Dark Matter Candidates

- Neutrinos ? (Ω_vh² < 0.0067 @ 95%CL)
- Sterile Neutrinos
- Axions
- SUSY particles
 - Lightest neutralino
 - Sneutrinos
 - Gravitinos
 - Axinos
- KK states (UED)
- Wimpzillas
- •

.

General requirements

- Electrically Neutral ("dark")
- Stable (lifetime larger than age of the Universe)
- Massive and Weakly interacting ($\Omega_{\rm CDM} \, {\rm h^2} \simeq 0.1$)

→WIMPS

Note: No reason DM should be made out of a single component (neutrinos exist)

19/9/13

DM at the LHC

WIMP Pair Production at Colliders

At colliders (LHC) WIMPs can be produced in pairs leading to "nothing to detect" in the final state

Such events are tagged via the presence of an energetic jet or a photon from initial state radiation

→Monojets and Monophotons (complementary....but QCD wins in rate)

Rather spectacular and distinctive signature to search for new physics (also relevant in searches for large extra spatial dimensions, etc...)

pp collisions at 7 & 8 TeV

LHC Performance (2010-2012)

...will come back in 2015 with 13-14 TeV collisions

Mean Number of Interactions per Crossing

ATLAS

(relevant to photon ID)

LAr lead sampling calorimeter with an 'accordion' geometry.

- 3 longitudinal layers with cell of ΔηxΔφ:
 - 1st layer (0.003÷0.006)x0.1;
 - 2nd layer 0.025x0.025;
 - 3rd layer 0.050x0.025.
- Presampler for |η|<1.8 ΔηxΔφ~0.025x0.1.
- Barrel-end-cap crack |η|=1.37÷1.52.
- σ(E)/E=(10-17%)(η)/√E(GeV) ⊕ (1.2÷1.8%).

Inner Detector - Barrel (B)&End-cap (E) in 2T solenoidal magnetic field:

- Track reconstruction up to |η|<2.47;
- Conversion verticies reconstruction;
- e/γ and e/π^{\pm} separation;
- Pixel: (B) 3 layers +(E) 2x3 disks σ_{rφ}~10 μm, σ_z~115 μm;
- Semi Conductor Tracker: (B) 4 layers +(E) 2x9 disks $\sigma_{r\phi}$ ~17 µm, σ_z ~580 µm;
- Transition Radiation Tracker: (B) 73 layers +(E) 2x160 layers σ_z~130 μm;

√s = 7 TeV

|m| < 0.6

10²

L dt = 4.9 fb

2×10²

Unconverted y

Electron extrapolation

Matrix method

TLAS Preliminary

20

0.9

0.8

0.7

0.6

0.5

0.

0.2

-⁰

Å_ ₽

30 40 50

7 TeV 4.6 fb⁻¹

Monophotons Event Selection

Events selected online with E_t^{miss} > 70 GeV at the trigger level (> 98% efficient for this analysis)

Well-reconstructed primary vertex $P_t^{\gamma} > 150 \text{ GeV}, |\eta^{\gamma}| < 2.37, \text{ isolated}$ $E_t^{\text{miss}} > 150 \text{ GeV}$ $N^{\text{jet}} < 2 (p_T > 30 \text{ GeV}) (anti-k_t 0.4)$ $\Delta \phi (\gamma, E_T^{\text{miss}}) > 0.4, \Delta \phi (\text{jet}, E_T^{\text{miss}}) > 0.4$ <image>

Veto on leptons (rejects W/Z backgrounds) No electrons with $p_{\tau} > 20$ GeV , $|\eta| < 2.47$ No muons with $p_{\tau} > 10$ GeV, $|\eta| < 2.4$

data sample: 116 events (24% have one jet)

Uncertainties

Source	Impact on total prediction	Note	
γ E-scale	0.9%	Some of the studies on systematics suffer from limited statistics in contro	
γ isolation/ID/resolution	1.1%		
Jet E-scale/resolution	0.9% - 1.2%	samples	
Leptons	0.3%	Room for improvement in the 8 TeV analysis	
Low-pt jets/uncluster energy	0.8%		
Pileup subtraction	0.3%		
W/Z+γ modeling	6.9%	Conservative (ALPGEN vs SHERPA)	
Others Sources	< 0.5%	Trigger, Luminosity, lepton p _t , normalization of small backgrounds (top, diboson) 	
Statistical Component	14%	Due to limited size control samples in data	

Results

Typical ε ~ 75%

Effective Theory

(model independent approach)

Effective Lagrangian approach (contact interaction) with parameters M_* and m_y

 $M_*^2 \sim M^2/g_1g_2$ assuming the interaction is mediated by a heavy particle with mass M and couplings g_1 and g_2

Different operators are considered with different structures and here χ will be taken as Dirac fermions

Important note:

Not clear whether the effective approach under- or over-estimates the cross sections since this depends on the details of the unknown UV limit of the theory

Strictly speaking theory only applicable when M is much larger than the energy scale present in the reaction $[Q^2 << (4\pi M_*)^2]$ 19/9/13

Name	Initial state	Type	Operator	
D1	D1 qq sc		$rac{m_q}{M_\star^3}ar\chi\chiar q q$	
D5	qq	vector	$rac{1}{M_\star^2}ar\chi\gamma^\mu\chiar q\gamma_\mu q$	
D8	qq	axial-vector	$rac{1}{M_\star^2}ar\chi\gamma^\mu\gamma^5\chiar q\gamma_\mu\gamma^5 q$	
D9	qq	tensor	$rac{1}{M_\star^2}ar\chi\sigma^{\mu u}\chiar q\sigma_{\mu u}q$	
D11	gg	scalar	$rac{1}{4M_\star^3}ar\chi\chilpha_s(G^a_{\mu u})^2$	

 $\bar{\chi}$

 χ

90% CL Limits on M_{*}

- A x ϵ in the range between 11% (D1) and 23% (D9) (due to different E_t^{miss} spectrum)
- On signal yields: Experimental uncertainties (7%) Theoretical uncertainties ISR/FSR (4 % - 10%) PDFs (5% - 30%) $\mu_{R,F}$ (8%) $\omega_{R,F}$ (1/M*)⁶ $\omega_{R,F}$ (1/M*)⁶ (1/M*)⁶ (1/M*)⁷ (1/M*

Name	Initial state	Type	Operator	
D1	qq	scalar	$rac{m_q}{M_\star^3}ar\chi\chiar q q$	
D5	qq	vector	$rac{1}{M_\star^2}ar\chi\gamma^\mu\chiar q\gamma_\mu q$	
D8	qq	axial-vector	$rac{1}{M_\star^2}ar\chi\gamma^\mu\gamma^5\chiar q\gamma_\mu\gamma^5 q$	
D9	qq	tensor	$rac{1}{M_\star^2}ar\chi\sigma^{\mu u}\chiar q\sigma_{\mu u}q$	
D11	gg	scalar	$rac{1}{4M_\star^3}ar\chi\chilpha_s(G^a_{\mu u})^2$	

$(1/M^*)^6$	WIMP MASS	M _* in D1 (GeV)	M _∗ in D5 (GeV)	M _* in D8 (GeV)	M _* in D9 (GeV)
$(1/M^*)^4$	1 GeV	> 31	> 585	> 585	> 794
	1.3 TeV	> 5	> 156	> 100	> 188

Results are translated *into 90% CL limits* on M_{*} for different operators and as a function of WIMP mass

WIMP-nucleon cross section

 $\sigma^{\text{D1}} = 1.60 \times 10^{-37} \text{cm}^2 \left(\frac{\mu_{\chi}}{1 \text{ GeV}}\right)^2 \left(\frac{20 \text{ GeV}}{M^*}\right)^6$ $\sigma^{\text{D5}} = 1.38 \times 10^{-37} \text{cm}^2 \left(\frac{\mu_{\chi}}{1 \text{ GeV}}\right)^2 \left(\frac{300 \text{ GeV}}{M^*}\right)^4$ $\sigma^{\text{D8,D9}} = 4.7 \times 10^{-39} \text{cm}^2 \left(\frac{\mu_{\chi}}{1 \text{ GeV}}\right)^2 \left(\frac{300 \text{ GeV}}{M^*}\right)^4$

Different operators contribute either to spin-dependent or spin-independent WIMP-nucleon cross sections

Within the assumption of the validity of the effective theory the LHC results complement direct detection searches (particularly relevant at $m_{\chi} < 10$ GeV)

WIMPS

(monojets & monophotons)

Very significant improvement on limits compared to Tevatron10101001001

Large Extra Dimensions

 $(M_{PL})^{2} \sim R^{n} (M_{D})^{2+n}$

Extra spatial dimensions explain the apparent weakness of Gravity (relevant scale ~TeV)

A x ε about 20% (approx. independent on n and M_n)

On signal yields: Experimental uncertainties (7%) Theoretical uncertainties ISR/FSR (4%) PDFs (4% - 11% as n increases) (9% - 5% as n increases) $\mu_{\text{R,F}}$

95% CL limits on M_D vs n

19/9/13

Limits on M_D beyond 1.9 TeV (a real challenge for the model validity)

g,q

our brane

bulk

Final Notes

- Very successful LHC operations
- More than 26 fb-1 of data on tape for ATLAS (7 TeV & 8 TeV)
- 7 TeV results on monophotons
- Within the effective lagrangian framework the LHC DM searches are rather competitive & complement direct detection experiments
- Searches continue with 8 TeV dataset including all possible mono-X channels

"Just checking."

..and more data bring new things and more direct access to DM

More Energy and More Data !

El LHC will almost double the centre-of-mass energy in 2015

$8 \text{ TeV} \rightarrow 14 \text{ TeV}$ with increased luminosity

Ready for a new discovery ?

Backup Slides

Extra Dimensions

Alternative to solve **Hierarchy Problem**

Extra spatial dimensions explain the apparent weakness of Gravity (relevant scale ~ 1 TeV)

g,q

