Dark matter search in the mono-lepton channel with CMS

Klaas Padeken On behalf of the CMS Collaboration

RWTH Aachen III Phys. Inst. A

CMS-PAS-EXO-13-004 20. September 2013

Introduction	Theory 000	CMS Detector	Analysis 0000	Limits 0000000	Summary
Outline					

2 Theory

Uhh Dark Matter! We better bring a flashlight

Introduction ●○	Theory 000	CMS Detector	Analysis 0000	Limits 0000000	Summary
Introductio	on				9

Origin of the mono-lepton DM search

- Analysis started out as W' search with muons and electrons CMS-PAS-EXO-12-060
- Reinterpretation of W' in terms of DM by T. Tait, Y. Bai (arXiv:1208.4361)
- Results are summarized in CMS-PAS-EXO-13-004

Introduction ○●	Theory 000	CMS Detector	Analysis 0000	Limits 0000000	Summary
Motivatio	n				

Why mono-lepton?

- Experimental point of view:
 - Good trigger for mono-lepton events
 - Clean, well simulated background
 - Low systematic uncertainties from the detector
- Theoretical point of view:
 - Higher production cross section than mono-Z
 - Quark sensitive interference effects

Event with the highest M_T in the muon channel

Introduction	Theory	CMS Detector	Analysis	Limits	Summary

Theory

At the production two initial states can interfere. Reduction of the quark state to a single relative factor:

Interference not visible in mono-jet/ mono-photon events

$$V: \frac{1}{\Lambda^2} \bar{\chi} \gamma^{\mu} \chi \quad (\bar{u} \gamma^{\mu} u + \xi \bar{d} \gamma_{\mu} d)$$
$$AV: \frac{1}{\Lambda^2} \bar{\chi} \gamma^{\mu} \gamma^5 \chi \quad (\bar{u} \gamma^{\mu} \gamma_5 u + \xi \bar{d} \gamma^{\mu} \gamma_5 d)$$

The interference is described by a relative ξ between up- and down-type quarks. The interesting values are $\xi = -1, 0, +1$.

- Cross section flat vs M_χ up to 100 GeV
- Sharp drop at high M_{χ}
- Strong dependence on $\xi = 0, \pm 1$
- Small difference between AV and V
- A scales the cross section (no change in the kinematics)

More interference later!

Introduction	Theory	CMS Detector	Analysis	Limits	Summary

Mono-Leptons in CMS

Muons i	n CMS				
Introduction	Theory 000	CMS Detector ●○	Analysis 0000	Limits 0000000	Summary

Muon Reconstruction

- Tracker + Muon System
- Triggering all non isolated muons with p_T >40 GeV
- Resolution 1–1.5% at 10 GeV, ~8% at 1 TeV
- Overall efficiency (Barrel/End-cap) (Trigger x Reco x ID) ~ 90%/78%

Analysis Requirements

- $p_{\rm T} > 45\,{\rm GeV}$
- |η| < 2.1
- ID optimized for high p_T

10

Introduction	Theory 000	CMS Detector ○●	Analysis 0000	Limits 0000000	Summary
Electrons	in CMS	5			

Electron Reconstruction

- Tracker + ECAL
- Triggering all electrons with *E*_T >80 GeV and a loose ID
- Resolution better than 1% for *E*_T >100 GeV
- Overall efficiency (Barrel/End-cap) (Trigger x Reco x ID) ~ 84%/80%

Analysis Requirements

- *E*_T > 100 GeV
- |η| < 2.5
- Shower shape and track requirements optimized for high *E*_T

Missing Transverse Energy

Introduction	Theory 000	CMS Detector ○●	Analysis 0000	Limits 0000000	Summary
Electrons	in CMS	5			

Missing Transverse Energy

Electron Reconstruction

- Tracker + ECAL
- Triggering all electrons with *E*_T >80 GeV and a loose ID
- Resolution better than 1% for *E*_T >100 GeV
- Overall efficiency (Barrel/End-cap) (Trigger x Reco x ID) $\sim 84\%/80\%$

Analysis Requirements

- *E*_T > 100 GeV
- |η| < 2.5
- Shower shape and track requirements optimized for high E_T

Introduction	Theory	CMS Detector	Analysis	Limits	Summary

Analysis

Introduction Theory CMS Detector Analysis Summary 0000

Analysis Selection

The main value to identify signal events is M_T :

$$M_T = \sqrt{2 \cdot p_T^\ell \cdot E_T \cdot (1 - \cos \Delta \phi_{\ell,\nu})}$$

To reduce the background two kinematic selections are used:

$$\left(\Delta \phi(\mathbf{I}, \mathbf{E}_{\mathrm{T}}) > 2.5\right)$$

$$\left[0.4 < p_{\rm T}/E_{\rm T} < 1.5\right]$$

- No difference between only up or only down type quarks
- This is the only channel that is sensitive to the interference.
- Heavier quarks (c,s) production also contributes

signal shape for different ξ

Challenges for mono-lepton

- electron channel benefits from the high ECAL resolution
- Signal would change the steepness
- Low M_T region more sensitive

Introduction	Theory	CMS Detector	Analysis	Limits	Summary

Limits

Introduction	Theory 000	CMS Detector	Analysis 0000	Limits 0000000	Summary
Limit calcu	ulation				9

- Multi-bin limit over the hole M_T range
- Bayesian approach
 - Uniform prior for parameter of interest
 - Log-normal priors for systematic uncertainties

Introduction	Theory 000	CMS Detector	Analysis 0000	Limits	Summary
Limit calcu	ulation				9

Model parameters:

- Coupling: V or AV
- Mass M_{χ}
- Interaction scale Λ
- Interference parameter ξ

Possible Limits

- Cross section vs. M_{χ} (direct observable)
- Λ vs. M_{χ} (direct interpretation)
- Dark matter-nucleon cross section vs. M_{χ} (recalculation of Λ)

- 95% C.L. exclusion limit on the pp-cross section
- No dependence on M_{χ} or on the coupling (Vector vs. Axial-vector)

- The important M_T region changes with ξ
- Higher signal efficiency \rightarrow high M_T important

• Effective theory validity shown for $\Lambda \gtrsim 2M_{\chi}$ ($g_{\chi}g_q = 1$) and $\Lambda \gtrsim M_{\chi}/(2\pi)$ $(g_{\chi}g_q = (4\pi)^2)$

- M_{χ} dependence of Λ due to production σ
- No phase-space for high M_{χ}

Introduction	The OO	eory	CMS D	etector	Analysis 0000	Li	imits ○○○○●○○	Summary
Λ limts								9
CMS 1800 Spin 1600 Limit 1400 Limit 1200 Limit 1000 Limit 200 Limit 1000 Limit 100 Limit	Preliminary Dependent in 95 C.L.	$ \begin{array}{c} 2012 \ 20 \ \text{fb}^{-} \\ Ex \\ Ex \\ 0b \\ $	$\sqrt{s} = 8 \text{ TeV}$ pected limit for pected limit for served limit for served limit for served limit for $M_{\chi}(2\pi)$ $2M_{\chi}$	$\begin{bmatrix} z & -1 \\ z & z & -1 \\ z & z & -1 \\ z & z & z & -1 \\ z & z & z & -1 \\ z & z & z & z & -1 \\ z & z & z & z & z & z \\ z & z & z & z$	$\begin{array}{c} \text{CMS Preli}\\ 1800 \text{ Spin Inde}\\ 1600 \text{ Limit in 95}\\ 1400 \text{ Limit in 95}\\ 1400 \text{ Limit in 95}\\ 1200 \text{ Limit in 95}\\ 1000 \text{ Limit in 95}\\ 100$	$\begin{array}{c c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ $	20 fb ⁻¹ $\sqrt{s} = 8$ Expected limi Expected limi Observed lim Observed lim Observed lim Observed lim $\sqrt{2}M_{\chi}(2\pi)$ $\Lambda = 2M_{\chi}$ 10^2 M_{χ} $\xi = +1$ 10^2 0.33	TeV Trop $\xi=0$ trop $\xi=1$ trop $\xi=1$
	10	1.05	0.74	0.34	1.01	0.71	0.32	

0.31

0.23

1.01

0.89

0.70

0.62

0.33

0.28

100

500

1.06

0.72

0.75

0.51

24

- Successfully investigated the mono-lepton dark matter interpretation
- Evaluation of the kinematics for mono-lepton events
- Studied the effect of interference
- No observation of dark matter
- Limits for various scenarios

Introduction	Theory	CMS Detector	Analysis	Limits	Summary

Backup

Trigger

HLT_Ele80_CaloIdVT_TrkIdT, HLT_Ele80_CaloIdVT_GsfTrkIdT,

Exactly one good electron. To avoid turn-on: $E_T > 100 \text{ GeV}$.

Quantity	HEEP v4.1				
-	EB (0 $< \eta <$ 1.442)	EE (1.56 $< \eta <$ 2.5)			
SC E _T	35 GeV	35 GeV			
$ \Delta \eta $	0.005	0.007			
$ \Delta \phi $	0.06	0.06			
H/E	0.05	0.05			
$\sigma_{i\eta i\eta}$	-	0.03			
E^{2x5}/E^{5x5}	>0.94 or E1x5/E5x5 > 0.83	-			
EM + Had Depth 1 Iso	< \rho^*0.28 + 2+ 0.03*Et	$< ho^{*}0.28$ + 1+ 0.03*Et ($ ho_{ m T}>$ 50 GeV)			
		$< ho^{*}0.28 + 2.5 \ (ho_{ m T} < 50)$			
Tracker Isolation	5 GeV	5 GeV			
Inner Layer Lost Hits	≤ 1	<u>≤ 1</u>			
$ d_{xy} $	< 0.02 cm	< 0.05 cm			

- Good data-mc agreement for the HEEP ID
- Identification easier for high p_T
- Electron resolution well simulated for in the accessible region

Introduction	Theory 000	CMS Detector	Analysis 0000	Limits 0000000	Summary
Muon s	election				
Trigger					1
HLT_Mu4	0_eta2p1				

Require exactly one good muon. The muon has to be a global muon and a tracker muon at the same time, with

- at least one hit from the muon detector in the global track,
- at least one hit from the pixel detector from the global track, and
- muon segments in at least two muon stations.
- the transverse impact parameter with respect to the beamspot of less than 0.2 mm in order to further reduce cosmic background.
- the longitudinal distance of the tracker track wrt. the primary vertex is $d_z < 5$ mm.
- to guarantee a good p_T measurement more than five tracker layers with hit(s) are required.
- $\Delta p_{\rm T}/p_{\rm T}$ < 0.3, to suppress muons with an uncertain $p_{\rm T}$.

Muon Performance in CMS

- Strong η dependence of the single muon trigger
- Signal produced in the central region
- Flat efficiency for high *p*_T

< 500 GeV/c

Muon n [-]

Introduction	Theory 000	CMS Detector	Analysis 0000	Limits 0000000	Summary
possible o	coupling	gs			

Vector:
$$\frac{1}{\Lambda^2} \bar{\chi} \gamma^{\mu} \chi \quad \bar{q} \gamma_{\mu} q$$

Axial-Vector: $\frac{1}{\Lambda^2} \bar{\chi} \gamma^{\mu} \gamma^5 \chi \quad \bar{q} \gamma_{\mu} \gamma^5 q$

For a detailed study look at paper Beltran et al. (arXiv:0808.3384).

$$\frac{m_q}{\Lambda^3} \bar{\chi} \chi^- qq$$

$$\frac{m_q}{\Lambda^3} \bar{\chi} \chi^5 \chi \quad \bar{q}q$$

$$\frac{m_q}{\Lambda^3} \bar{\chi} \chi^5 \chi \quad \bar{q}\gamma^5 q$$

$$\frac{m_q}{\Lambda^3} \bar{\chi} \chi^5 \chi \quad \bar{q}\gamma^5 q$$

$$\frac{m_q}{\Lambda^3} \bar{\chi} \gamma^5 \chi \quad \bar{q}\gamma^5 q$$

$$\text{Vector like}$$

$$\frac{1}{\Lambda^2} \bar{\chi} \gamma^\mu \chi \quad \bar{q}\gamma_\mu q$$

$$\frac{1}{\Lambda^2} \bar{\chi} \gamma^\mu \chi^5 \chi \quad \bar{q}\gamma_\mu \gamma^5 q$$

$$\frac{1}{\Lambda^2} \bar{\chi} \gamma^\mu \chi^5 \chi \quad \bar{q}\gamma_\mu \gamma^5 q$$

$$\frac{1}{\Lambda^2} \bar{\chi} \gamma^\mu \chi^5 \chi \quad \bar{q}\gamma_\mu \gamma^5 q$$

$$\text{Tensor like}$$

$$\frac{1}{\Lambda^2} \bar{\chi} \sigma^{\mu\nu} \chi \quad \bar{q}\sigma_{\mu\nu} q$$

$$\frac{1}{\Lambda^2} \epsilon^{\mu\nu\alpha\beta} \bar{\chi} \sigma^{\mu\nu} \chi \quad \bar{q}\sigma_{\alpha\beta} q$$

$$\text{strong gluon Coupling}$$

Scalar like

0.8

500

1000

1500

NLO QCD with MCatNLO

1500

- NLO EW with HORACE
- $k(M_T) = \frac{\Delta \sigma(\text{NLO})/\Delta M_T}{\Delta \sigma(\text{LO})/\Delta M_T}$

1000

0.5

500

combination additive and multiplicative

2000

2500

M₇ / (GeV)

ainty of parametrization

M₇ / (GeV)

2500

2000

Introduction	Theory 000	CMS Detector	Analysis 0000	Limits 0000000	Summary
Interference	ce				9

vector-coupling: $\frac{1}{\Lambda^2} \bar{\chi} \gamma^{\mu} \chi \quad (\bar{u} \gamma^{\mu} u + \xi \bar{d} \gamma_{\mu} d)$ simplified: $|(a + \xi b)|^2$ $= |a|^2 + |\xi b|^2 - 2\Re(\xi \cdot a \cdot b)$ $= |a|^2 + |\xi b|^2 - 2 \cdot \xi \cdot a \cdot b$ for $\mathcal{E} = -1$ $\implies |a|^2 + |b|^2 + 2 \cdot a \cdot b$ (constructive interference) for $\xi = 0$ $\implies |a|^2$ (no interference) for $\xi = +1$ $\implies |a|^2 + |b|^2 - 2 \cdot a \cdot b$ (destructive interference)