

Search for DM pair production with W&Z boson

Björn Penning Fermilab/UChicago

DM at Collider, Chicago September 20th, 2013

Why looking for Dark Matter with W/Z?

- Typical search channel:
 - mono-jet,
 - mono-photon
- mono-W small rate exp.
 - same couplings up/down-type quarks
- W boson emission may become dominant
 - opposite sign couplings
- Largest BR for hadronic decay

Y. Bai, T. Tait; arXiv:1208.4361

Isospin Violating DM

- **f**_n/**f**_p = ratio of proton/neutron coupling
- For -0.72 < f_n/f_p < -0.66 the DAMA- and CoGeNT-favored regions overlap and the sensitivity of XENON is sufficiently reduced to be consistent with these signals

Dataset

Analysis uses full 2012 ATLAS data set (20.3fb-1)

Björn Penning • DM at Collider Workshop • Chicago, September 20th, 2013

Dow in 201

Wimp Signal

- Using Effective Field Theory
- C1, D1 (scalar), D5 (destructive), D52 (vector) (constructive, mono-W only) and D9 (tensor) with M*=1TeV
- m_{DM} = 1, 50, 100, 200, 400, 700, 1000, 1300
- Sensitive possibly as well to e.g.: $H \rightarrow inv$ decays (Wh, Zh)

N. W.	Coupling Group	Operator	Operator Structure	Coefficient
and and a	Scalar quark	D1	$\overline{\chi}\chi\overline{oldsymbol{q}}oldsymbol{q}$	m_q/M_*^3
	Vector quark	D5	$\overline{\chi}\gamma^{\mu}\chi\overline{oldsymbol{q}}\gamma_{\mu}oldsymbol{q}$	$1/M_{*}^{2}$
	Tensor quark	D9	$\overline{\chi}\sigma^{\mu u}\chi\overline{q}\sigma_{\mu u}q$	$1/M_{*}^{2}$
-				
	Coupling Group	Operator	Operator Structure	Coefficient
	Scalar quark	C1	$\chi^{\dagger}\chi\overline{q}q$	m_q/M_*^2

Selection

- Jets boosted, reconstructed as single large radius jet
- Using 'Cambridge-Aachen' algorithm for jet reconstruction
 - p_T>250 GeV, |η|<1.2
 - **-** 50 GeV < M_{jets} < 120 GeV
 - $\sqrt{(y)}<0.4$, where $\sqrt{(y)}<\min(p_T^1, p_T^2) \Delta R1,2 / M_{jets}$ (balancing of two leading subjets)

- Further selections:
 - <=1 anti-k_T 0.4 jet with p_T>40, |η|<4.5
 - separated from large radius jet and E^{miss}
 - Signal Regions: ET^{miss}> 350, 500 GeV

Background Selection

ℓ/a

//d

- MC simulations:
 - ttbar
 - single top
 - diboson
- Top-CR region:
 - 1 b-tag, 2 narrow jet, 1 large jet

 Dominant bkgd: Z(vv)+jets, W(lv)+jets and Z(ll)+jets

- Data-driven method
 - muon: signal selection + μ

Control Regions

Event yield

Process	$E_{\rm T}^{\rm miss} > 350 {\rm GeV}$	$E_{\rm T}^{\rm miss} > 500 {\rm GeV}$
$Z \to \nu \bar{\nu}$	400^{+39}_{-34}	54 ⁺⁸
$W \to \ell^{\pm} \nu, Z \to \ell^{\pm} \ell^{\mp}$	210^{+20}_{-18}	22_{-5}^{+4}
WW, WZ, ZZ	57^{+11}_{-8}	$9.1^{+1.3}_{-1.1}$
<i>tī</i> , single <i>t</i>	39_{-4}^{+10}	$3.7^{+1.7}_{-1.3}$
Total	710_{-38}^{+48}	89^{+9}_{-12}
Data	705	89

- W/Z+jets dominant (85%)
 - QCD negligible in hadronic W/Z selection
- Uncertainties dominated by limited CR statistics

Results

Unfortunately no excess over SM found

Limits on Mediator

Individual limits on Mediator Mass

Limits on WIMP-Nucleon xsec

- Converting into limits on WIMP-Nucleon scattering cross section
- Spin independent limits improve by three orders of magnitude if up/ down have opposite sign

Limits on $H \rightarrow inv$.

Limits on Higgs→inv

Model independent limits

Model independent limits as function of W-boson fraction

Conclusion

- First WIMP search using 'mono-W/Z'
- In case of constructive interference between up- and down quarks, the results set the strongest limits on M*
- There is no significant excess observed in these signal regions.
- Exclusion limits are extracted on mono-W and mono-Z signals.
- Please see ATLAS-CONF-2013-073 for details

Backup

- For highly boosted objects objects, decay products have narrow dR distribution
- To recover efficiency & resolution:
 - Use a single large R Cambridge/Aachen jet encompassing all decay products
 - Revert last step of clustering and look for two low mass, symmetric sub-jets
 - Recluster constituents of sub-jets, keep 3 hardest new sub-jets
- Process greatly improves jet mass measurement, QCD separation

