Weakly-interacting particle kinematics at the LHC and the super-razor variables

with M. Buckely, J. Lykken and M. Spiropulu

Dark Matter at the LHC, U. of Chicago - Sept. 20 2013

Talk Outline

- Open final states what and why?
- Event reconstruction challenges
- Super-razor variables by example: slepton pair production and dark matter LSP's
- Outlook

Open vs. closed final states

CLOSED $H \to Z(\ell \ell) Z(\ell \ell)$

Can calculate all masses, momenta, angles

Can use masses for discovery, can use information to measure spin, CP, etc.

OPEN $H \rightarrow W(\ell \nu)W(\ell \nu)$ Under-constrained system with multiple weakly interacting particles – can't calculate all the kinematic information What useful information can we calculate? What can we measure?

Razor kinematic variables

mega-jet mega-jet invisible?

- Assign every reconstructed object to one of two mega-jets
- Analyze the event as a 'canonical' open final state:
 - two variables: M_R (mass scale), R (scale-less event imbalance)
- An inclusive approach to searching for a large class of new physics possibilities with open final states

Razor variables arXiv:1006.2727v1 [hep-ph]

CMS+ATLAS analyses PRD 85, 012004 (2012) EPJC 73, 2362 (2013) PRL 111, 081802 (2013) CMS-PAS-SUS-13-004

Inclusive approach doesn't:

- Distinguish between particles/objects coming from the hard scatter and ex. ISR, underlying event etc.
- Make assumptions about signals to assign objects to mega-jets or interpret event?
- For cases where we assume a specific decay topology, what other information can we glean from an event?

Main backgrounds: WW, ttbar, Z+jets

Example: M_{CT}

assuming ~mass-less leptons:

$$M_{CT}^2 = 2\left(p_T^{\ell_1} p_T^{\ell_2} + \vec{p}_T^{\ \ell_1} \cdot \vec{p}_T^{\ \ell_2}\right)$$

Constructed to have a kinematic endpoint at: $M_{CT}^{\max} = -$

$$\max_{CT} = \frac{m_{\tilde{\ell}}^2 - m_{\tilde{\chi}_1^0}^2}{m_{\tilde{\chi}_1^0}} = M_{\Delta}$$

From:

Daniel R. Tovey. On measuring the masses of pair-produced semi-invisibly decaying particles at hadron colliders. *JHEP*, 0804:034, 2008.

M_{CT} in practice

Singularity variables (like M_{CT}) can be sensitive to quantities that can vary dramatically event-by-event

The mass challenge

The invariant mass is invariant under coherent Lorentz transformations of two particles

$$m_{inv}^2(p_1, p_2) = m_1^2 + m_2^2 + 2(E_1 E_2 - \vec{p_1} \cdot \vec{p_2})$$

The Euclidean mass (or contra-variant mass) is invariant under anti-symmetric Lorentz transformations of two particles

$$m_{eucl}^{2}(p_{1}, p_{2}) = m_{1}^{2} + m_{2}^{2} + 2(E_{1}E_{2} + \vec{p}_{1} \cdot \vec{p}_{2})$$
Even the simplest case requires variables with both properties!
Lab di-slepton
frame CM frame slepton
frame lt
left lt
lef

Correcting for CM p_T

- Want to boost from lab-frame to CM-frame
- We know the transverse momentum of the CM-frame:

$$\vec{p}_T^{\ CM} = \vec{p}_T^{\ \ell_1} + \vec{p}_T^{\ \ell_2} + \vec{E}_T^{\ \text{miss}}$$

But we don't know the energy, or mass, of the CM-frame:

$$\vec{\beta}_{lab\to CM} = \frac{\vec{p}_T^{\ CM}}{\sqrt{|\vec{p}_T^{\ CM}|^2 + \hat{s}}}$$

$p_{\rm T}$ corrections for $M_{\rm CT}$

Attempts have been made to mitigate this problem:
(i) 'Guess' the lab → CM frame boost:

$$\begin{split} M_{CT(\text{corr})} &= \begin{cases} M_{CT} & \text{after boosting by } \beta = p_b/E_{\text{cm}} & \text{if } A_{x(\text{lab})} \geq 0 \text{ or } A'_{x(\text{lo})} \geq 0 \\ M_{CT} & \text{after boosting by } \beta = p_b/\hat{E} & \text{if } A'_{x(\text{hi})} < 0 \\ M_{Cy} & \text{if } A'_{x(\text{hi})} \geq 0 \end{cases} \\ \text{x - parallel to boost} & A_x &= p_x[q_1]E_y[q_2] + p_x[q_2]E_y[q_1] \\ \text{y - perp. to boost} & \text{with:} & M_{Cy}^2 &= (E_y[q_1] + E_y[q_2])^2 - (p_y[q_1] - p_y[q_2])^2 \\ \text{Giacomo Polesello and Daniel R. Tovey. Supersymmetric particle mass mea-} \end{cases}$$

surement with the boost-corrected contransverse mass. *JHEP*, 1003:030, 2010.

(ii) Only look at event along axis perpendicular to boost: $M_{CT\perp}$

Konstantin T. Matchev and Myeonghun Park. A General method for determining the masses of semi-invisibly decaying particles at hadron colliders. *Phys.Rev.Lett.*, 107:061801, 2011.

- The strategy is to transform observable momenta iteratively *reference-frame to reference-frame*, traveling through each of the reference frames relevant to the topology
- At each step, determine the next transformation by making *boost/contra-boost invariant* guesses for unknown parameters

Resulting variable has kinematic endpoint at:

 2^{nd} transformation(s): extract variable sensitive to invariant mass of squark: M^R_{Δ}

 M_{Δ}^{R} is a singularity variable – in fact it is essentially identical to M_{CT} but evaluated *in a different reference frame*. The result is that the new variable is invariant under the previous transformations!

Variable comparison

Three different singularity variables, all attempting to measure the same thing Which is the best? Why?

MC analysis implemented with ATLAS and CMS-like selections to compare variables (see backup)

Results validation

See Matt Buckley's talk (next) for results of this variable comparison for both slepton and chargino pair-production!

But what else can we calculate?

But what else can we calculate?

Angles, angles, angles...

Angles, angles, angles...

Approximation of slepton helicity angle sensitive to particle spin!

Also allows us to better resolve the kinematic endpoint of interest

Can re-imagine a di-lepton analysis in new basis of variables

> Can improve sensitivity while removing MET cuts!

 M^R_Δ Mass-squared difference $|\cos \theta_R|$ spin correlations, better resonant/non-resonant prod. $|\cos \theta_R|$ resolution of mass edge

Summary

- not only develop 'good' mass estimator variables, but to decompose each event into a *basis of kinematic variables*
- Through iterative procedure, each variable is (as much as possible) *independent of the others*
- The interpretation of variables is straightforward; they each correspond to an *actual, well-defined, quantity in the event*
- Applicable to a wide range of signals

BACKUP SLIDES

A Monte Carlo analysis to compare

Baseline Selection

- Exactly two opposite sign leptons with $p_T > 20 \text{ GeV/c}$ and $|\eta| < 2.5$
- If same flavor, $m(\ell \ell) > 15 \text{ GeV/c2}$
- ΔR between leptons and any jet (see below) > 0.4
- veto event if b-tagged jet with $p_T > 25 \text{ GeV/c}$ and $|\eta| < 2.5$
- Kinematic Selection

'CMS selection''ATLAS selection' $|m(\ell\ell) - m_Z| > 15 \text{ GeV}$ $|m(\ell\ell) - m_Z| > 10 \text{ GeV}$ $E_T^{miss} > 60 \text{ GeV}$ $E_T^{\text{miss,rel.}} = \begin{cases} E_T^{\text{miss}} & \text{if } \Delta\phi_{\ell,j} \ge \pi/2 \\ E_T^{\text{miss}} \times \sin \Delta\phi_{\ell,j} & \text{if } \Delta\phi_{\ell,j} < \pi/2 \end{cases} > 40 \text{ GeV}$ CMS-PAS-SUS-12-022ATLAS-CONF-2013-049

Analysis Categories

 Consider final 9 different final states according to lepton flavor and jet multiplicity – simultaneous binned fit includes both high S/B and low S/B categories

 $(ee, \mu\mu, e\mu) \times (0, 1, \ge 2 \text{ jets}) \text{ with } p_T^{jet} > 30 \text{ GeV}/c, |\eta^{jet}| < 3$

Fit to kinematic distributions (in this case, $M_{\Delta}{}^{R}$, M_{T2} or M_{CTperp} in 10 GeV bins), over all categories for WW, $t\bar{t}$ and $Z/\gamma^* + jets$ yields

Systematic uncertainties

- 2% lepton ID (correlated btw bkgs, uncorrelated between lepton categories)
- 10% jet counting (per jet) (uncorrelated between all processes)
- 10% x-section uncertainty for backgrounds (uncorrelated)
 + theoretical x-section uncertainty for signal (small)
- 'shape' uncertainty derived by propagating effect of 10% jet energy scale shift up/down to MET and recalculating shapes templates of kinematic variables
- Uncertainties are introduced into toy pseudo-experiments through marginalization (pdfs fixed in likelihood evaluation but systematically varied in shape and normalization in toy pseudo-experiment generation)

Expected Limit Comparison

Where does improvement come from?

No accumulation of events in 'zero' bin \rightarrow large increase in signal efficiency in small background region of phase-space

Charginos

30

Ng

Singularity variables

The guiding principle we employ for creating useful hadron-collider event variables, is that: we should place the best possible bounds on any Lorentz invariants of interest, such as parent masses or the center-of-mass energy $\hat{s}^{1/2}$, in any cases where it is not possible to determine the actual values of those Lorentz invariants due to incomplete event information.

From:

A.J. Barr, T.J. Khoo, P. Konar, K. Kong, C.G. Lester, et al. Guide to transverse projections and mass-constraining variables. *Phys.Rev.*, D84:095031, 2011.

Constructed to have a kinematic endpoint (with the right test mass) at:

$m_{T2}^{ m max}(m_\chi)=m_{ ilde q}$

From:

C.G. Lester and D.J. Summers. Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders. *Phys.Lett.*, B463:99–103, 1999.

M_{T2} in practice

'peak position' of signal and eμ nJets=0, Zveto, E^{miss,rel}>40 GeV 10⁶ 10 GeV backgrounds due to other cuts ATLAS Preliminary Data 2012 ww (p_T, MET) and only weakly 10⁵ dt=20.3 fb⁻¹ √s=8 TeV tī + Wt sensitive to sparticle masses Z+iets Event Fake leptons 10^{3} Higgs Bkg. Uncert. 10² $(m\tilde{\chi}_{,}^{\pm},m\tilde{\chi}_{,}^{\cup}) = (350,0) \text{ GeV}$ From: 10 ATLAS-CONF-2013-049 10⁻¹ Data / SM 1.5 'endpoint' behavior lost due to resolution effects, incorrect test 0.5 mass, ISR, + many other 20 180 200 80 40 60 effects.... m_{T2} [GeV]