The ATLAS Monojet Search for Dark Matter

Steven Schramm,

for the ATLAS Collaboration

Dark Matter at the LHC Workshop

September 19, 2013

Outline

2 Background measurements

 $\sqrt{s} = 8 \text{ TeV}$ note with 10 fb⁻¹ (HCP2012): ATLAS-CONF-2012-147 $\sqrt{s} = 7 \text{ TeV}$ paper with full 2011 dataset (JHEP): EXOT-2011-20 Unless otherwise mentioned, results discussed will be for 8 TeV

Dark Matter at the LHC

- Dark Matter (DM) has no known interactions beyond gravity
- What if it couples to Standard Model (SM) particles very weakly?
 - This could be through the weak force or a new phenomenon
 - If so, could be a type of Weakly Interacting Massive Particle (WIMP)
- If DM is a WIMP, it could be produced in collisions at the LHC
- Such WIMPs would escape the detector unobserved
 - However, momentum is still conserved vectorially sum visible particles
 - $\bullet\,$ Momentum imbalances countered by "missing transverse energy" $E_{\rm T}^{\rm miss}$
- \bullet Large $E_{\rm T}^{\rm miss}$ indicates presence of non-interacting particles, like DM
 - $\bullet~\mbox{Note that}~E_T^{\rm miss}$ must be calculated from other observables
 - Events which produce only neutrinos will not be seen by ATLAS

Effective Field Theories of DM

To minimize model-dependence, use an Effective Field Theory (EFT)

- Two input SM particles, namely light quarks (u,d,s,c) or gluons
- Two pair-produced output DM particles
- Effective operator connecting SM inputs to DM outputs
 - Operator is a "black box" representing our ignorance

• Diagrams have only WIMPs in the final state, and thus are invisible

- However, the input quarks/gluons can radiate jets (or other particles)
- $\bullet\,$ This gives us the jet plus E_T^{miss} topology

Monojet topology

- \bullet The monojet topology consists of one jet and large $E_{\rm T}^{\rm miss}$
 - This is exactly the topology just mentioned for DM production
 - $\bullet\,$ We expand this to allow for either one or two jets balancing the $E_{\rm T}^{\rm miss}$

Before collision:

- $\vec{p}_{T}^{p_{1}} = 0$
- $\vec{p}_{\rm T}^{{
 m p}_2}=0$

After collision:

- $\vec{p}_{\mathrm{T}}^{\mathrm{jet}} = -\vec{\alpha}$
- $\vec{p}_{\mathrm{T}}^{\chi_1} + \vec{p}_{\mathrm{T}}^{\chi_2} = \vec{\alpha}$

Event selection and region cuts

Event selection:

- One or two jets satisfying $ho_{
 m T}^{
 m jet} \geq 30\,{
 m GeV}$ and $|\eta^{
 m jet}| \leq 4.5$
- Central lead jet: $|\eta^{
 m jet1}| <$ 2.0
- Suppress mis-measured jets: $\left|\Delta\phi\left(\mathrm{E}_{\mathrm{T}}^{\mathrm{miss}},\mathrm{jet2}
 ight)
 ight|\geq0.5$
- No electrons or muons
- Passes the relevant region cut

Signal and control region cuts:

- R1: $(p_{\mathrm{T}}^{\mathrm{jet1}}, \mathrm{E}_{\mathrm{T}}^{\mathrm{miss}}) \geq 120 \, \mathrm{GeV}$
- R2: $(p_{\mathrm{T}}^{\mathrm{jet1}}, \mathrm{E}_{\mathrm{T}}^{\mathrm{miss}}) \geq 220 \,\mathrm{GeV}$
- R3: $(p_{\mathrm{T}}^{\mathrm{jet1}}, \mathrm{E}_{\mathrm{T}}^{\mathrm{miss}}) \geq 350 \,\mathrm{GeV}$
- R4: $(p_{\mathrm{T}}^{\mathrm{jet1}}, \mathrm{E}_{\mathrm{T}}^{\mathrm{miss}}) \geq 500 \, \mathrm{GeV}$
 - $\mathsf{SR}=\mathsf{Signal}\ \mathsf{Region}$
 - CR = Control Region

Backgrounds

Data-driven backgrounds

Background	Reason/source
$Z ightarrow u u + ext{jet}(s)$	Irreducible, single largest background
$\mathcal{W} ightarrow \ell u + jet(s)$	Missed the lepton or hadronic $ au$ decay
$Z \rightarrow \ell \ell + jet(s)$	Missed both leptons or hadronic $ au$ decays
Multi-jet (QCD)	$Missed/misreconstructed \text{ jets} \to E_{\mathrm{T}}^{\mathrm{miss}}$
Non-collision backgrounds	Beam halo and cosmic muons

Small backgrounds taken from MC

Diboson (WW, ZZ, WZ)

Single top and $t\bar{t}$

Estimating the $Z \rightarrow \nu \nu$ background

- Muons are minimum ionizing particles
 - They leave almost no energy in the calorimeter
 - Instead, they are measured by the muon spectrometer
- Neutrinos leave no energy in the calorimeter or spectrometer
- \bullet Consider a calorimeter-based $E_{\rm T}^{\rm miss}:$ muons and neutrinos are similar
- Identify $Z
 ightarrow \mu \mu$ and $W
 ightarrow \mu
 u$ events in data with the spectrometer
 - Use MC ratios to "transfer" to $Z \rightarrow \nu \nu$ estimate in data

The $Z \rightarrow \mu\mu$ and $W \rightarrow \mu\nu$ control regions

Data-driven background estimation

Use data-driven estimate to significantly reduce systematic uncertainties:

1. Select data events in a given CR, subtract (small) QCD background

 $Z \rightarrow \mu \mu$ and $W \rightarrow \mu \nu$ are two such control regions

2. Remove EW backgrounds from a given CR and process:

 $(1-f_{\rm EW}^{\rm bg}) = 1-N_{\rm MC}^{\rm bg}/N_{\rm MC}^{\rm process+bg} = N_{\rm MC}^{\rm process}/N_{\rm MC}^{\rm process+bg}$

3. "Transfer" from the lepton CR to the SR: account for any differences such as lepton reconstruction efficiencies, triggers, and acceptance $N_{\text{estimate}}^{\text{SR}} = \left(N_{\text{data}}^{\text{CR}} - N_{\text{est,QCD}}^{\text{CR}}\right) \left(1 - f_{\text{EW}}^{\text{bg}}\right) \left(N_{\text{MC}}^{\text{SR}} / N_{\text{MC}}^{\text{CR}}\right)$

Unfortunately, low MC statistics in SR3 and SR4 for $8\,{\rm TeV}$ conf note

Background uncertainties

Systematic uncertainties were well controlled:

Systematic source	Uncertainty
Jet and $E_{\rm T}^{\rm miss}$ energy scale and resolution	2-4% on transfer factors
Lepton identification efficiencies	1-3% on transfer factors
Non-electroweak backgrounds	<1% on total background
Showering and hadronization modelling	3% on total background

Statistical uncertainties were problematic:

• The background MC samples had insufficient statistics in SR3/SR4

SR3: 5.5% SR4: 15.8%

 $\bullet\,$ As such, improvements are minimal compared to $7\,\mathrm{TeV}$ paper

Results

Results in SR3

UNIVERSITY OF TORONTO

- SR3 ($p_{T}^{\text{jet1}}, E_{T}^{\text{miss}} \ge 350 \, \text{GeV}$) chosen for DM model limits due to stats
- Orange dashed line is the signal strength for a vector coupling between quarks and fermionic DM
- Also shown: ADD extra dimensions and gravitino production interpretations

Types of DM considered

Couplings between SM particles and fermionic DM were considered:

Operator	Coupling type	7 TeV paper	8 TeV note
D1	Scalar quark	Yes	No
D5	Vector quark	Yes	Yes
D8	Axial quark	Yes	Yes
D9	Tensor quark	Yes	No
D11	Gluon	Yes	Yes

- D1, D5, and D11 provide spin-independent limits on DM
- D8, D9 provide spin-dependent limits on DM
- EFT operators come from this paper by Tim Tait et al
- Signal sample systematics in the backup slides

Results

Suppression scale limits

- M^* : the suppression scale of the contact interaction, $M^* = M/\sqrt{g_1g_2}$
- Grey region is where the EFT approach is not valid
 - More thorough validity studies: talk by Johanna Gramling later today
- Values below the solid observed limit line are excluded
- Green line is the WIMP relic abundance: above the line is excluded if the WIMP is to naturally explain the observed relic density

WIMP-nucleon scattering limits

- M^* lower limits are converted to cross-section upper limits
- Regions above the observed limit lines are excluded
- Comparisons are made with several direct detection experiments
 - Assumptions which go into such comparisons could use more study
- $\bullet\,$ These results are from the $7\,{\rm TeV}$ paper

 10^{3}

Spin-depende

WIMP mass m, [GeV]

10

= 7 TeV. 4.7 fb⁻¹. 90%CL

Summary

- The monojet channel has been studied by the ATLAS collaboration
 - $7\,\mathrm{TeV}$ paper with the full 4.7 fb^{-1} : EXOT-2011-20
 - $\bullet~8\,{\rm TeV}$ note with the first 10.5 ${\rm fb}^{-1}$: ATLAS-CONF-2012-147
- This signature provides a handle on the production of DM at the LHC
 - Good agreement between observed data and SM predictions
 - Limits are placed on various contact interaction operators which connect SM inputs to fermionic DM final states
- $\bullet\,$ An update is currently underway with the full $8\,{\rm TeV}$ dataset of $20{\rm fb}^{-1}$
 - The full dataset will help to further probe the DM parameter space
 - Large improvements expected from increasing MC background statistics

Backup Slides

---- data 2012

Ldt=10.5fb⁻¹

√s = 8 TeV

1.5

Ldt=10.5fb

√s = 8 TeV

+++

1.5

Total BG

Dibosons

- data 2012

- Total BG

Dibosons

W (\rightarrow I v) + jets

 $Z (\rightarrow ||) + iets$

tt + single top

Z (→vv) + jets

Z (→ II) + jets

tt + single top

W (→Iv) + jets

2.5 3 E^{miss}/p_ jet1

More EW CR validation plots

18 / 16

0.16

10³

Data / BG

QCD data-driven estimate

- The multijet background originates from misreconstructed jet(s) producing fake $E_{\rm T}^{\rm miss}$
 - Changes E_T^{miss} direction (aligned with jet)
 - Inverting $\Delta \phi$ cut gives good CR of QCD enhanced events, $|\Delta \phi (E_{T}^{miss}, jet2)| < 0.5$
- $\bullet\,$ Consider events with 2 or 3 jets, $p_{\rm T}\,{>}\,30\,{\rm GeV}$
 - Extrapolate $p_{\rm T}$ distribution of least energetic jet down to $0\,{\rm GeV}$
- Systematics from subtractions of other backgrounds and alternative fitting functions
- Negligible contribution in SR3 and SR4

Δ φ (E_____,jet2)

Non-collision backgrounds estimate

- Monojet topologies are very similar to beam backgrounds
 - Requires dedicated jet cleaning cuts to remove contamination
- Remaining NCB estimated using the leading jet timing distribution
 N^{SR}_{NCB} = N^{SR}_{-10<t<-5} × N^{NCB}_{-10<t<-5}
- Negligible contribution in SR3 and SR4

• Jet cleaning details:

ATLAS-CONF-2012-020

Additional cleaning studies

done in collaboration with

the NCB group

Table of results and other SRs

Background Predictions \pm (stat.data) \pm (stat.MC) \pm (syst.)				
	SR1	SR2	SR3	SR4
$Z (\rightarrow \nu \overline{\nu}) + jets$	$173600 \pm 500 \pm 1300 \pm 5500$	$15600 \pm 200 \pm 300 \pm 500$	$1520 \pm 50 \pm 90 \pm 60$	$270 \pm 30 \pm 40 \pm 20$
$W \rightarrow \tau \nu$ +jets	$87400 \pm 300 \pm 800 \pm 3700$	$5580 \pm 60 \pm 190 \pm 300$	$370 \pm 10 \pm 40 \pm 30$	$39 \pm 4 \pm 11 \pm 2$
$W \rightarrow ev+jets$	$36700 \pm 200 \pm 500 \pm 1500$	$1880 \pm 30 \pm 100 \pm 100$	$112 \pm 5 \pm 18 \pm 9$	$16 \pm 2 \pm 6 \pm 2$
$W \rightarrow \mu v + jets$	$34200 \pm 100 \pm 400 \pm 1600$	$2050 \pm 20 \pm 100 \pm 130$	$158 \pm 5 \pm 21 \pm 14$	$42 \pm 4 \pm 13 \pm 8$
$Z \rightarrow \tau \tau + jets$	$1263 \pm 7 \pm 44 \pm 92$	$54 \pm 1 \pm 9 \pm 5$	$1.3 \pm 0.1 \pm 1.3 \pm 0.2$	$1.4 \pm 0.2 \pm 1.5 \pm 0.2$
$Z/\gamma^*(\rightarrow \mu^+\mu^-)$ +jets	$783 \pm 2 \pm 35 \pm 53$	$26 \pm 0 \pm 6 \pm 1$	$2.7 \pm 0.1 \pm 1.9 \pm 0.3$	-
$Z/\gamma^*(\rightarrow e^+e^-)$ +jets	-	-	-	-
Multijet	$6400 \pm 90 \pm 5500$	$200 \pm 20 \pm 200$	-	-
$t\bar{t}$ + single t	$2660 \pm 60 \pm 530$	$120 \pm 10 \pm 20$	$7 \pm 3 \pm 1$	$1.2 \pm 1.2 \pm 0.2$
Dibosons	$815 \pm 9 \pm 163$	83 ±3 ±17	$14 \pm 1 \pm 3$	$3 \pm 1 \pm 1$
Non-collision background	$640 \pm 40 \pm 60$	$22 \pm 7 \pm 2$	-	-
Total background	$344400 \pm 900 \pm 2200 \pm 12600$	$25600 \pm 240 \pm 500 \pm 900$	$2180 \pm 70 \pm 120 \pm 100$	$380 \pm 30 \pm 60 \pm 30$
Data	350932	25515	2353	268

SR1

SR4

Steven Schramm (University of Toronto)

ATLAS Monojet Search for DN

September 19, 2013 21 / 16

Jet $p_{\rm T}$ SR distributions

Steven Schramm (University of Toronto)

ATLAS Monojet Search for DM

September 19, 2013

p_ jet1 [GeV]

22 / 16

DM EFT operators

Fermion operators

Name	Operator	Coefficient
D1	$\overline{\chi}\chi\overline{q}q$	m_q/M_*^3
D2	$\overline{\chi}\gamma_5\chi\overline{q}q$	im_q/M_*^3
D3	$\overline{\chi}\chi\overline{q}\gamma_5 q$	im_q/M_*^3
D4	$\overline{\chi}\gamma_5\chi\overline{q}\gamma_5q$	m_q/M_*^3
D5	$\overline{\chi}\gamma^{\mu}\chi\overline{q}\gamma_{\mu}q$	$1/M_{*}^{2}$
D6	$\overline{\chi}\gamma^{\mu}\gamma_{5}\chi\overline{q}\gamma_{\mu}q$	$1/M_{*}^{2}$
D7	$\overline{\chi}\gamma^{\mu}\chi\overline{q}\gamma_{\mu}\gamma_{5}q$	$1/M_{*}^{2}$
D8	$\overline{\chi}\gamma^{\mu}\gamma_{5}\chi\overline{q}\gamma_{\mu}\gamma_{5}q$	$1/M_{*}^{2}$
D9	$\overline{\chi}\sigma^{\mu u}\chi\overline{q}\sigma_{\mu u}q$	$1/M_{*}^{2}$
D10	$\overline{\chi}\sigma_{\mu u}\gamma_5\chi\overline{q}\sigma_{lphaeta}q$	i/M _* ²
D11	$\overline{\chi}\chi {\cal G}_{\mu u}{\cal G}^{\mu u}$	$lpha_s/4M_*^3$
D12	$\overline{\chi}\gamma_5\chi\mathcal{G}_{\mu u}\mathcal{G}^{\mu u}$	$ilpha_s/4M_*^3$
D13	$\overline{\chi}\chi ilde{{\cal G}}_{\mu u}{\cal G}^{\mu u}$	$ilpha_s/4M_*^3$
D14	$\overline{\chi}\gamma_5\chi ilde{{\sf G}}_{\mu u}{\sf G}^{\mu u}$	$\alpha_s/4M_*^3$

Scalar operators

Name	Operator	Coefficient
C1	$\chi^{\dagger}\chi\overline{q}q$	m_q/M_*^2
C2	$\chi^{\dagger}\chi\overline{q}\gamma_{5}q$	im_q/M_*^2
C3	$\chi^{\dagger}\partial_{\mu}\chi\overline{q}\gamma^{\mu}q$	$1/M_{*}^{2}$
C4	$\chi^{\dagger}\partial_{\mu}\chi\overline{q}\gamma^{\mu}\gamma_{5}q$	i/M_*
C5	$\chi^{\dagger}\chi {\cal G}_{\mu u}{\cal G}^{\mu u}$	$lpha_s/4M_*^2$
C6	$\chi^{\dagger}\chi \tilde{G}_{\mu u}G^{\mu u}$	$i \alpha_s / 4 M_*^2$

All of the listed operators are from a WIMP EFT by Tim Tait et al:

(http://arxiv.org/abs/1008.1783)

DM systematics (8 TeV note)

Systematic source	Uncertainty
Jet and $E_{\rm T}^{\rm miss}$ energy scale and resolution	1-10% on event yield
Trigger efficiency	1% on event yield
Luminosity	3.6% on event yield
ISR/FSR and matching scale	3% on $\sigma imes A$
α_s	8% on $\sigma imes A$
PDF	D5: 7-30%, D11: 25-88%
Factorization/renormalization scales	D5: 10%, D11: 30%

UNIVERSITY OF TORONTO

Basic validity of the EFT

- $M_* \approx M/\sqrt{g_1g_2}$
- $M>2m_\chi$ for valid description
- $g_1g_2\lesssim (4\pi)^2$ for perturbative theory
- $m_\chi \lesssim 2\pi M_*$ for weakly coupled perturbative UV completion
- So, for us, where $g_1 = g_2 = 1$ (and thus $M_* = M$):
 - $m_\chi < M_*/2$ for valid description
 - $m_\chi \lesssim 2\pi M_*$ for perturbation
- We consider m_{χ} of: 10, 50, 100, 200, 400, 700, 1000, 1300 GeV

DM EFT

WIMP Annihilation limits

- Assumes 100% branching ratio of WIMPs to quarks
- Plot from 7 TeV paper

