Dark Matter + Heavy Quarks in scalar interactions at hadron colliders

Gabriella Sciolla*

with G. Artoni*, T. Lin+, B. Penning+# and A. Venturini*

*Brandeis University, *University of Chicago, *Fermilab

Outline

- The theoretical framework
- A "modified mono-jet" analysis
- Expected sensitivity to SI interactions

arXiv:1307.7834v2 [hep-ex] 1 Aug 2013

Dark Matter at the LHC Workshop, Chicago, Sep 19-21, 2013

Model-independent EFT for DM

- WIMP hypothesis has been tested for decades and tight limits exist by now
 - Time to explore alternative approaches
- Effective field theory (EFT) offer simplified approach to DM
 - Dark matter is pair-produced at the LHC
 - Interaction between DM and SM is mediated by new particles
 - New particles too heavy to be directly seen at the LHC
 - Interactions are described through contact operators
 - Scalar, vector, axial-vector, tensor
 - For each operator, all observables (relic abundance, direct detection signal, collider signal) depend on single scale, M_{*}
 - Easy to combine results from direct, indirect, collider searches

Current DM searches at colliders

- Signature: missing E_T + X_{visible} "mono-X" approach
 - E_t^{miss} : χ particles are invisible in the detector
 - X_{visible}: energetic jet, photon, W, Z, ... used to tag event
- Very competitive with direct searches
 - SD interactions: ~ best limits for most masses
 - SI interactions: best limits for low mass -- m_{χ} < O(10 GeV)
- Mono-X analyses already published for 7 & 8 TeV LHC data
 - See for example 7 TeV mono-jet and mono-photon publications:
 - ATLAS, JHEP 04 (2013) 075, arXiv:1210.4491 [hep-ex]
 - CMS, JHEP 09 (2012) 094, arXiv:1206.5663 [hep-ex]
 - ATLAS, Phys. Rev. Lett. 110 (2013) 011802, arXiv:1209.4625 [hep-ex]
 - CMS, Phys. Rev. Lett. 108 (2012) 261803, arXiv:1204.0821 [hep-ex]

Theory background

 We focus on an effective <u>scalar</u> interaction between DM and quarks described by D1 operator

$$O_{scalar} = \sum_{q} \frac{m_q}{M_*^3} \bar{q} \, q \, \bar{\chi} \, \chi$$

- M_{*} single scale that describes strength of interaction
- $O_{scalar} \sim m_q$ enhances couplings to t and b
 - Kinematic and PDF suppression for t and b are not a showstopper
 - Probing dark matter couplings to top and bottom at the LHC T.Lin, R.Kolb and L.Wang, Phys.RevD.88.063510, arXiv:1303:6638
 - Standard mono-jet analysis not very sensitive to O_{scalar}
 - Exploiting b and t in final state improve limits on O_{scalar} substantially
 - Advantages for background suppression
 - b-tagging leading jet suppresses backgrounds by ~10²

DM + heavy jets at the LHC

Signal:

g and a contraction of the second of the

Direct b production: Smaller contribution to x-section tt channel: dominant contribution

Backgrounds:

Z+jets, W+jets, Standard Model tt production

Scenarios and Simulation

- Work conducted in the Snowmass context
- Simulation
 - Signal: MadGraph5 and PYTHIA
 - x-section for DM+b normalized using MCFM Dark (at NLO)
 - Background: common Snowmass production
 - Detector simulation: "Snowmass detector" in DELPHES 3
 - b-tag efficiency ~70%, mis-tag rate: 1% (10%) for qq (cc)
- Scenarios considered
 - Scenario 1: LHC Run 2
 - 300 fb⁻¹ at 14 TeV with pileup of 50 (circa 2020)
 - Scenario 2: Very High-luminosity LHC
 - 3000 fb⁻¹ at 14 TeV with pileup of 140
 - Scenario 3: High-energy LHC
 - 3000 fb⁻¹ at 33 TeV with pileup of 140

Analysis strategy

- Signature: large E_T^{miss} recoiling against energetic b-jet(s)
 - Lepton veto to suppress W+jet and Z+jet, SM tt backgrounds
- "Direct b production" channels
 - Low jet multiplicity, ~1 b-jet
- "tt" channel
 - Higher probability of >1 b-jet, harder E_T^{miss} spectrum

Background suppression

B-tagging is very powerful in suppressing SM backgrounds

	Process	Monojet	b -tag on j_1
Background	$Z+\mathrm{jets}(\mathrm{fake})$	406 fb	7 fb
	$Z+b+\mathrm{jet}$	6.7 fb	3 fb
	$W+{\rm jets}, W+b$	95 fb	2 fb
	$t ar{t} + { m jets}$	16 fb	6 fb
Signal	$\bar{X}X+\mathrm{jets}$	11 fb	0.7 fb
	$\bar{X}X + b + \text{jets}$	65 fb	33 fb
	$\bar{X}X + t\bar{t}$	244 fb	113 fb

$$\varepsilon_{\rm back} \sim 2\%$$

$$\varepsilon_{\rm signal} \sim 50\%$$

Expected signal (M_{*}=50GeV, m_{χ} =10GeV) and background at 8 TeV Basic cuts applied: $E_T^{miss}>350$ GeV, $p_T^{lead}>100$ GeV

E_t^{miss} vs m_χ and M_*

E_t^{miss}: signal vs background

Signal assumptions:

- M_{*} =100 GeV
- m_x = 10 GeV

Cut optimization

Cut on E_T^{miss} optimized for each scenario and various m_χ hypotheses maximizing Significance=S/sqrt(S+B)

Process	Scenario 1	Scenario 2	Scenario 3
$ \not\!\!E_{\mathrm{T}} \mathrm{cut} [\mathrm{GeV}] $	350	400	440

Results: constraints on M_{*}

90% CL limits on the scalar operator from DM plus heavy jet, including couplings to tops and bottoms

Results: constraints on σ^{SI}_{DM-n}

Using $\sigma_n=rac{(0.38m_n)^2\mu_{\chi n}^2}{\pi M_*^6}pprox 2 imes 10^{-38}{
m cm}^2\left(rac{30~{
m GeV}}{M_*}
ight)^6$

Conclusion

 Sensitivity to <u>scalar interaction</u> between DM and quarks boosted by focusing on final states with a heavy quark

produced at the LHC

Compared to generic mono-jet

Signature: b-tag jets + E_t^{miss}

- Unique reach at low m_x
 - Many "observations" of light DM
- This work based on
 - T. Lin et al., arXiv:1303:6638
 - Other simplified models with the scalar mediator
 - e.g.: Cotta et al. arXiv:1305.6609 [hep-ph]

Outlook

- This study is very preliminary
 - This work focused on mono-b approach: improvement expected with dedicated tt analysis
 - Expected improvement on limits on $\sigma_{\text{n-DM}}$: ~ 5
 - Probing separately b and t production: probe flavor structure of couplings between DM and quarks
 - Theory is making progress
 - e.g. build UV complete model, derive fully consistent constraints
- This work focused on long-term LHC scenarios
 - High luminosity and high energy LHC for Snowmass
 - First experimental results will be ready soon
 - 8 TeV analysis under way in ATLAS

Limits expected for 8 TeV

"mono-b" analysis with 20 fb @ 8 TeV

- Expected limit on M_{*}~100 GeV
 - Now: 30 GeV from 7 TeV standard mono-jet analysis