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Can we learn about the 
dark sector if DM has 
highly suppressed 
couplings to SM? 
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Outline 

• Cold collisionless DM paradigm in trouble (??) 

– Discrepancy between N-body simulations and 
astrophysical observations on smallest scales 

– Dwarf galaxies: laboratories for studying DM 

 

• DM may have self-interactions 

– Particle physics implications of self-interacting DM 



CDM in trouble 

1. Core-vs-cusp problem 

– Central densities of dwarf halos exhibit cores 

 

2. Too-big-to-fail problem 

– Simulations predict O(10) massive MW satellites 
more massive than observed MW dSphs 

3. Missing satellite problem 

– Fewer small MW dSphs than predicted by simulation 

– Small enough to fail 

DM density: r ~ ra a ~ -1 (cusp, NFW)    or    a ~ 0 (core) 

Moore (1994), Flores & Primack (1994) 

Boylan-Kolchin, Bullock, Kaplinghat (2011 + 2012) 

Klypin et al (1999), Moore et al (1999) 



1. Core-vs-cusp problem 

Flat core 

THINGS (dwarf galaxy survey) - Oh et al. (2011)  

Sharp cusp 

Moore (1994), Flores & Primack (1994), ... 

r ~ ra 

Cores in dwarf galaxies outside the MW halo 

Baryonic feedback from supernovae may flatten central cusps (Governato et al 2012) 



1. Core-vs-cusp problem 
Cores in MW dwarf spheroidals (dSphs) 

Walker & Penarrubia (2011) 

Stellar subpopulations 
(metal-rich & metal-poor) as 
“test masses” in gravitational 
potential 

Enclosed mass M(<r) = d3r r 

Estimate enclosed mass from line-of-sight dispersion:    M(<r) = m r <slos
2>/G      m=2.5 

Not enough baryonic feedback from supernovae (Garrison-Kimmel et al 2013) 



1. Core-vs-cusp problem 
Cores in MW dwarf spheroidals (dSphs) 

m 

 
 

Frenk, Strigari, White (2013) [C. Frenk’s Aspen talk] 

MW dSphs can be consistent with 
NFW profiles due to uncertainty in m  

Cores in MW dSphs favored from longevity of ~10 Gyr old globular clusters 
 

Cusps lead to inspiral of GCs on ~ few Gyr timescale by dynamical friction, cores do 
not 

Sanchez-Salcedo et al (2006), Goerdt et al (2006) 



1. Core-vs-cusp problem 

Cores in low surface 
brightness galaxies 
(LSBs) 

de Blok & Bosma (2002) 

Metal-poor galaxies with 
limited star formation 
history (more pristine) 
 
Not enough baryonic 
feedback to affect DM 
cusps 

Kuzio de Naray & 
Spekkens (2011) 



2. Too-big-to-fail problem 

MW galaxy should have O(10) satellite galaxies which are 
more massive than the most massive (classical) dwarf 
spheroidals 

Boylan-Kolchin, Bullock, Kaplinghat (2011 + 2012) 

From Weinberg, Bullock, Governato, Kuzio de Naray, Peter  (2013) 



2. Too-big-to-fail problem 

MW galaxy should have O(10) satellite galaxies which are 
more massive than the most massive (classical) dwarf 
spheroidals 

Boylan-Kolchin, Bullock, Kaplinghat (2011 + 2012) 

• Variation in number of satellites (~10% “tuning”) 
 

• Uncertainty in MW halo mass 

Purcell & Zentner (2012) 



Self-interactions 
• Self-interactions can solve small scale structure problems 

Vogelsberger, Zavala, Loeb (2012); see also Rocha et al, Peter et al (2012) 

DM self-scattering moves predicted circular 
velocities into (closer) alignment with MW dSph 

Black = CDM 
Red/green/blue = SIDM 

Core vs cusp problem Too big to fail problem 



Self-interacting dark matter 

• What does this tell us about the underlying 
particle physics theory of the dark sector? 



Self-interacting dark matter 

• What does this tell us about the underlying 
particle physics theory of the dark sector? 

• History of particle physics models for SIDM 

1. s=const 

2. s~1/v 

3. s~1/v4 (massless mediator) 

4. Scattering with a finite mass mediator 

 

Spergel & Steinhardt (2000), Dave et al (2000) 

Yoshida et al (2000) 

Ackerman et al (2008) 

Buckley & Fox (2009), Feng, Kaplinghat, Yu (2009),  Loeb & 
Weiner (2010), ST, Yu, Zurek (2012 + 2013) 



Five particle physics lessons for SIDM 



Five particle physics lessons for SIDM 

1. Large self-interaction cross section required 

 
– Typical WIMP: s ~ 1 pb, mc ~ 100 GeV 

 
– New mediator f much lighter than weak scale 

Figure-of-merit: 

X 

X 
f 

X 

X 

self-interaction 



Five particle physics lessons for SIDM 

2. Light mediator implies velocity-dependent 
self-interaction cross section 

 

s/mX enhanced at low velocity, suppressed at high 
velocity (like Rutherford scattering) 



Five particle physics lessons for SIDM 

3.  Different size DM halos have different velocities 

 

Bullet cluster Elliptical halo shapes – NGC 720 

DM appears collisionless on larger scales 

Randall et al. (2007) 
Buote et al. (2002); Feng et al. (2010) 



Five particle physics lessons for SIDM 

3.  Different size DM halos have different velocities 

 

Dwarfs   v ~ 30 km/s  SIDM 

LSBs    v ~ 100 km/s SIDM 

MW-sized halos  v ~ 200 km/s Collisionless DM 

Clusters   v ~ 1000 km/s Collisionless DM 

 

Natural for self-interactions to manifest in smaller halos 



Five particle physics lessons for SIDM 

4. Annihilation channel for the DM relic density 

 

 

 

– Preserves WIMP miracle 

X 

X* 

f 

f 
annihilation 



Five particle physics lessons for SIDM 

5. Mediator particles should decay before BBN 

 

 

 

– Upper bound on f lifetime implies lower bound 
on direct detection cross section 

decay 

SM 
f 

SM 

Minimal setup with no new particles: 
f decays to SM fermions before BBN 

X 

f 
f 

X 

f 

Direct detection 

Direct detection constraints rule out 
large parameter region for SIDM 



Simplified models for SIDM 
• DM particle X + light mediator f 

 



Simplified models for SIDM 
• DM particle X + light mediator f 

 

Holdom (1984); Pospelov et al (2007); Arkani-Hamed et al (2009); Lin et al (2011)  … 

Portals for direct detection: kinetic mixing 

f lifetime: 

Qf eg e 



Constraints on kinetic mixing 

Dent, Ferrer, Krauss (2012) 

Beam dump 
experiments 

SN1987A cooling 
arguments 

Post BBN decays 

Direct searches 

SIDM region 

Kinetic mixing case very constrained for SIDM:   eg ~ 10-10  (!) 

eg 

mf 



DM self-interaction cross section 
• Nonperturbative calculation 

– Similar to Sommerfeld enhancement for annihilation 

 

 

 

– Equivalent to solving the Schrodinger equation 

• Yukawa potential 

 

• Compute phase shifts 

 

• Transfer cross section 

X 

X 
f 

X 

X 

X 

X 

X 

X 
f 

X 

X 

X 

X 
f + + + … 

Buckley & Fox (2009),                      
ST, H.-B. Yu, K. Zurek (2012 + 2013) 



Parameter space for symmetric SIDM 

SIDM region for solving 
dwarf anomalies 
 
Wide range of DM mass 
Mediator ~ 1 – 100 MeV 
 
Assume dwarf halos 
with characteristic 
velocity 30 km/s 

Peaks are where DM self-scattering 
has quantum mechanical 
resonances (bound states) 



Parameter space for symmetric SIDM 

Shaded region: solve 
dwarf anomalies 
 
Halo shape bound 



Parameter space for symmetric SIDM 

Shaded region: solve 
dwarf anomalies 
 
Halo shape bound 

Velocity-independent 
cross section  

Velocity-dependent 
cross section  



Parameter space for symmetric SIDM 

Shaded region: solve 
dwarf anomalies 
 
Halo shape bound 
 
Direct detection via 
kinetic mixing 



Parameter space for symmetric SIDM 

Shaded region: solve 
dwarf anomalies 
 
Halo shape bound 
 
Direct detection via 
kinetic mixing 
 
XENON bounds with 
mixing parameter   

eg = 10-10 



Parameter space for symmetric SIDM 

Shaded region: solve 
dwarf anomalies 
 
Halo shape bound 
 
Direct detection via 
kinetic mixing 
 
XENON bounds with 
mixing parameter   
eg = 10-10 
 

CMB bound 
Lopez-Honorez et al (2013) 



Parameter space for asymmetric SIDM 

Shaded region: solve 
dwarf anomalies 



Parameter space for asymmetric SIDM 

Shaded region: solve 
dwarf anomalies 
 
Halo shape bound 
 



Parameter space for asymmetric SIDM 

Shaded region: solve 
dwarf anomalies 
 
Halo shape bound 
 
Bullet cluster 



Parameter space for asymmetric SIDM 

Shaded region: solve 
dwarf anomalies 
 
Halo shape bound 
 
Bullet cluster 
 
Future merging 
clusters bound (??) 



Parameter space for asymmetric SIDM 

Shaded region: solve 
dwarf anomalies 
 
Halo shape bound 
 
Bullet cluster 
 
Direct detection 
with eg = 10-10 



Parameter space for asymmetric SIDM 

Shaded region: solve 
dwarf anomalies 
 
Halo shape bound 
 
Bullet cluster 
 
Direct detection 
with eg = 10-10 

Velocity-independent 
cross section  

Velocity-dependent 
cross section  



Parameter space for asymmetric SIDM 

Shaded region: solve 
dwarf anomalies 
 
Halo shape bound 
 
Bullet cluster 
 
Direct detection 
from scattering on 
electrons with         
eg = 10-4 

Essig et al (2011+2012) 



Direct detection 

Benchmarks from SUSY 



SIDM benchmarks for direct detection 



SIDM benchmarks for direct detection 



Conclusions (part 1) 

• Simplified model: DM c + mediator f 

• Anomalies on dwarf scales: mf ~ 1 – 100 MeV 

• Although SIDM may be decoupled from direct 
detection, expect DM-SM coupling at some level 

• Light mediator means direct detection sensitive 
to very small DM-SM couplings 

• Current & future direct detection exploring “BBN 
parameter region” (f  SM before BBN) 



Conclusions (part 2) 

• Direct detection complementary to astrophysics 

– Constraints on large scales (e.g. Bullet Cluster) 
constrain SIDM at low DM mass (constant s) 

– Direct detection constrain SIDM at WIMP-scale 
masses (corresponding to v-dependent  s) 

 



Backup 



Comparison to previous work 
1. More efficient method for matching onto asymptotic 

solution of Bessel functions, not sines (B&F had ℓmax = 5) 

2. More efficient formula for summing partial waves 

M. Buckley & P. Fox (2009) 

ℓmax 

ST, H.-B. Yu, K. Zurek (2013) 

ℓmax Buckley & Fox 2009 



SIDM and direct detection 

Self-interactions change phase space 
distribution of DM halo 

Vogelsberger and Zavala (2012) 

O(10%) effect on DM recoil rate in direct detection experiments 
Also effect annnual modulation amplitude and phase 



Portals to the dark sector 

1. Vector mediator (f mixes with Z or g) 

• Kinetic mixing with photon 
 

 

• Z mass mixing (eZ is Z-f mixing angle): 

 

2. Scalar mediator  

• Higgs mixing (eh is h-f mixing angle) 
 

 

(Assume e << 1, mf ~ 1 – 100 MeV << mZ) 

Holdom (1984); Pospelov et al (2007); 
Arkani-Hamed et al (2009);                
Lin et al (2011)  … 

Babu et al (1997); 
Davoudiasl et al (2012) … 


