Beyond Collisionless DM # Sean Tulin University of Michigan Based on: ST, Haibo Yu, Kathryn Zurek (1210.0900 + 1302.3898) Manoj Kaplinghat, ST, Haibo Yu (1308.0618 + 13xx.xxxx) # Exploring the dark sector Can we learn about the dark sector if DM has highly suppressed couplings to SM? # Exploring the dark sector #### Outline - Cold collisionless DM paradigm in trouble (??) - Discrepancy between N-body simulations and astrophysical observations on smallest scales - Dwarf galaxies: laboratories for studying DM - DM may have self-interactions - Particle physics implications of self-interacting DM #### CDM in trouble - 1. Core-vs-cusp problem Moore (1994), Flores & Primack (1994) - Central densities of dwarf halos exhibit cores DM density: $\rho \sim r^{\alpha}$ $\alpha \sim -1$ (cusp, NFW) or $\alpha \sim 0$ (core) - 2. Too-big-to-fail problem Boylan-Kolchin, Bullock, Kaplinghat (2011 + 2012) - Simulations predict O(10) massive MW satellites more massive than observed MW dSphs - 3. Missing satellite problem Klypin et al (1999), Moore et al (1999) - Fewer small MW dSphs than predicted by simulation - Small enough to fail Cores in dwarf galaxies outside the MW halo Moore (1994), Flores & Primack (1994), ... Baryonic feedback from supernovae may flatten central cusps (Governato et al 2012) Cores in MW dwarf spheroidals (dSphs) Stellar subpopulations (metal-rich & metal-poor) as "test masses" in gravitational potential Walker & Penarrubia (2011) Enclosed mass $M(\langle r) = \int d^3r \rho$ Not enough baryonic feedback from supernovae (Garrison-Kimmel et al 2013) Estimate enclosed mass from line-of-sight dispersion: $M(< r) = \mu r < \sigma_{los}^2 > /G = \mu = 2.5$ Cores in MW dwarf spheroidals (dSphs) Frenk, Strigari, White (2013) [C. Frenk's Aspen talk] MW dSphs can be consistent with NFW profiles due to uncertainty in μ Cores in MW dSphs favored from longevity of ~10 Gyr old globular clusters Cusps lead to inspiral of GCs on ~ few Gyr timescale by dynamical friction, cores do not Sanchez-Salcedo et al (2006), Goerdt et al (2006) Cores in low surface brightness galaxies (LSBs) Metal-poor galaxies with limited star formation history (more pristine) Not enough baryonic feedback to affect DM cusps Kuzio de Naray & Spekkens (2011) ## 2. Too-big-to-fail problem Boylan-Kolchin, Bullock, Kaplinghat (2011 + 2012) MW galaxy should have O(10) satellite galaxies which are more massive than the most massive (classical) dwarf spheroidals From Weinberg, Bullock, Governato, Kuzio de Naray, Peter (2013) ## 2. Too-big-to-fail problem Boylan-Kolchin, Bullock, Kaplinghat (2011 + 2012) MW galaxy should have O(10) satellite galaxies which are more massive than the most massive (classical) dwarf spheroidals Variation in number of satellites (~10% "tuning") Purcell & Zentner (2012) Uncertainty in MW halo mass #### Self-interactions Self-interactions can solve small scale structure problems Vogelsberger, Zavala, Loeb (2012); see also Rocha et al, Peter et al (2012) # Self-interacting dark matter What does this tell us about the underlying particle physics theory of the dark sector? # Self-interacting dark matter - What does this tell us about the underlying particle physics theory of the dark sector? - History of particle physics models for SIDM - $1. \ \sigma = const$ Spergel & Steinhardt (2000), Dave et al (2000) - 2. $\sigma \sim 1/v$ Yoshida et al (2000) - 3. $\sigma \sim 1/v^4$ (massless mediator) Ackerman et al (2008) - 4. Scattering with a finite mass mediator Buckley & Fox (2009), Feng, Kaplinghat, Yu (2009), Loeb & Weiner (2010), ST, Yu, Zurek (2012 + 2013) 1. Large self-interaction cross section required Figure-of-merit: $$\sigma/m_\chi \sim 1~{\rm cm^2/g}~\approx~2~{\rm barns/GeV}$$ – Typical WIMP: σ ~ 1 pb, m $_\chi$ ~ 100 GeV $\sigma/m_\chi \sim 10^{-14}~{\rm barns/GeV}$ $${f X}$$ ${f f ar X}$ $m_\phi \sim 1-100~{ m MeV}$ 2. Light mediator implies velocity-dependent self-interaction cross section σ/m_X enhanced at low velocity, suppressed at high velocity (like Rutherford scattering) #### 3. Different size DM halos have different velocities Randall et al. (2007) Buote et al. (2002); Feng et al. (2010) DM appears collisionless on larger scales 3. Different size DM halos have different velocities Dwarfs $v \sim 30 \text{ km/s}$ SIDM LSBs $v \sim 100 \text{ km/s}$ SIDM MW-sized halos $v \sim 200 \text{ km/s}$ Collisionless DM Clusters v ~ 1000 km/s Collisionless DM Natural for self-interactions to manifest in smaller halos 4. Annihilation channel for the DM relic density Preserves WIMP miracle $$\Omega_{\rm dm} \sim 0.2 \times \left(\frac{6 \times 10^{-26} \text{ cm}^3/\text{s}}{\langle \sigma v \rangle_{\rm ann}}\right) \sim 0.2 \times \left(\frac{\alpha_X}{10^{-2}}\right)^{-2} \times \begin{cases} (m_X/300 \text{ GeV})^2 \text{ vector} \\ (m_X/100 \text{ GeV})^2 \text{ scalar} \end{cases}$$ #### 5. Mediator particles should decay before BBN Minimal setup with no new particles: \$\phi\$ decays to SM fermions before BBN Upper bound on \(\phi \) lifetime implies lower bound on direct detection cross section Direct detection constraints rule out large parameter region for SIDM # Simplified models for SIDM DM particle X + light mediator φ $$\mathcal{L}_{int} = \begin{cases} g_{\chi} \bar{\chi} \gamma^{\mu} \chi \phi_{\mu} & \text{vector mediator} \\ g_{\chi} \bar{\chi} \chi \phi & \text{scalar mediator} \end{cases}$$ $$\alpha_X = g_X^2/(4\pi)$$ # Simplified models for SIDM DM particle X + light mediator φ $$\mathcal{L}_{\text{int}} = \begin{cases} g_{\chi} \bar{\chi} \gamma^{\mu} \chi \phi_{\mu} & \text{vector mediator} \\ g_{\chi} \bar{\chi} \chi \phi & \text{scalar mediator} \end{cases}$$ $$\alpha_X = g_X^2/(4\pi)$$ Portals for direct detection: kinetic mixing $\,\,\mathscr{L}_{\mathrm{mix}} = -\frac{\varepsilon_{\gamma}}{2}\,\phi_{\mu\nu}F^{\mu\nu}$ Holdom (1984); Pospelov et al (2007); Arkani-Hamed et al (2009); Lin et al (2011) ... $$\phi$$ lifetime: $1/\Gamma_{\phi} \approx 2.7 \ { m second} \times \left(\frac{\varepsilon_{\gamma}}{10^{-10}}\right)^{-2} \left(\frac{m_{\phi}}{10 \ { m MeV}}\right)^{-1}$ # Constraints on kinetic mixing Kinetic mixing case very constrained for SIDM: $\epsilon_{\gamma} \sim 10^{-10}$ (!) #### DM self-interaction cross section - Nonperturbative calculation Buckley & Fox (2009), ST, H.-B. Yu, K. Zurek (2012 + 2013) - Similar to Sommerfeld enhancement for annihilation - Equivalent to solving the Schrodinger equation - Yukawa potential $V(r) = \pm \frac{\alpha_X}{r} e^{-m_\phi r}$ - Compute phase shifts $\left. \frac{d\sigma}{d\Omega} = \frac{1}{k^2} \right| \sum_{\ell=0}^{\infty} (2\ell+1) e^{i\delta_{\ell}} P_{\ell}(\cos\theta) \sin\delta_{\ell} \right|^2$ - Transfer cross section $\sigma_T \equiv \int d\Omega \left(1 \cos\theta\right) d\sigma/d\Omega$ SIDM region for solving dwarf anomalies Wide range of DM mass Mediator $\sim 1 - 100 \text{ MeV}$ Assume dwarf halos with characteristic velocity 30 km/s Shaded region: solve dwarf anomalies Halo shape bound Shaded region: solve dwarf anomalies Halo shape bound Direct detection via kinetic mixing $$\sigma_{Xp}^{\rm SI} \approx 1.5 \times 10^{-24} \, \mathrm{cm}^2$$ $$\times \varepsilon_{\gamma}^2 \times \left(\frac{\alpha_X}{10^{-2}}\right) \left(\frac{m_{\phi}}{30 \, \mathrm{MeV}}\right)^{-4}$$ Shaded region: solve dwarf anomalies Halo shape bound Direct detection via kinetic mixing XENON bounds with mixing parameter $\epsilon_{\nu} = 10^{-10}$ Shaded region: solve dwarf anomalies Halo shape bound Direct detection via kinetic mixing XENON bounds with mixing parameter $\epsilon_{\gamma} = 10^{-10}$ CMB bound Lopez-Honorez et al (2013) Shaded region: solve dwarf anomalies Shaded region: solve dwarf anomalies Halo shape bound Shaded region: solve dwarf anomalies Halo shape bound **Bullet cluster** Shaded region: solve dwarf anomalies Halo shape bound **Bullet cluster** Future merging clusters bound (??) Shaded region: solve dwarf anomalies Halo shape bound **Bullet cluster** Direct detection with $\epsilon_{\gamma}=10^{-10}$ Shaded region: solve dwarf anomalies Halo shape bound **Bullet cluster** Direct detection from scattering on electrons with $$\varepsilon_{\gamma} = 10^{-4}$$ Essig et al (2011+2012) #### Direct detection #### SIDM benchmarks for direct detection #### SIDM benchmarks for direct detection # Conclusions (part 1) - Simplified model: DM χ + mediator ϕ - Anomalies on dwarf scales: $m_{\phi} \sim 1 100 \text{ MeV}$ - Although SIDM may be decoupled from direct detection, expect DM-SM coupling at some level - Light mediator means direct detection sensitive to very small DM-SM couplings - Current & future direct detection exploring "BBN parameter region" ($\phi \rightarrow$ SM before BBN) # Conclusions (part 2) - Direct detection complementary to astrophysics - Constraints on large scales (e.g. Bullet Cluster) constrain SIDM at low DM mass (constant σ) - Direct detection constrain SIDM at WIMP-scale masses (corresponding to v-dependent σ) # Backup # Comparison to previous work M. Buckley & P. Fox (2009) - 1. More efficient method for matching onto asymptotic solution of Bessel functions, not sines (B&F had $\ell_{max} = 5$) - 2. More efficient formula for summing partial waves $$\sigma_T = \frac{4\pi}{k^2} \sum_{\ell=0}^{\infty} \left[(2\ell+1) \sin^2 \delta_{\ell} - 2(\ell+1) \sin \delta_{\ell} \sin \delta_{\ell+1} \cos(\delta_{\ell+1} - \delta_{\ell}) \right]$$ $$\sigma_T = \frac{4\pi}{k^2} \sum_{\ell=0}^{\infty} (\ell+1) \sin^2(\delta_{\ell+1} - \delta_{\ell})$$ ST, H.-B. Yu, K. Zurek (2013) $$\sigma_T = \frac{4\pi}{k^2} \sum_{\ell=0}^{\infty} (\ell+1) \sin^2(\delta_{\ell+1} - \delta_{\ell})$$ #### SIDM and direct detection Self-interactions change phase space distribution of DM halo O(10%) effect on DM recoil rate in direct detection experiments Also effect annual modulation amplitude and phase #### Portals to the dark sector #### 1. Vector mediator (ϕ mixes with Z or γ) Kinetic mixing with photon $$\mathscr{L}_{\text{mix}} = -\frac{\varepsilon_{\gamma}}{2} \, \phi_{\mu\nu} F^{\mu\nu}$$ Holdom (1984); Pospelov et al (2007); Arkani-Hamed et al (2009); Lin et al (2011) ... • Z mass mixing (ε_Z is Z- ϕ mixing angle): $$\mathscr{L}_{\text{mix}} = \varepsilon_Z m_Z^2 \, \phi_\mu Z^\mu$$ Babu et al (1997); Davoudiasl et al (2012) ... #### 2. Scalar mediator • Higgs mixing (ε_h is h- ϕ mixing angle) $$\mathscr{L}_{\text{mix}} = -\varepsilon_h m_h^2 \phi h$$ (Assume ϵ << 1, m $_{\phi}$ \sim 1 – 100 MeV << m $_{Z}$)