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Dark Matter Searching

• Weakly Interacting Massive Particle (WIMP) is one of the most 
popular dark matter candidates.

• The interaction between WIMP and the SM particles makes it 
detectable by satellites (indirect detection), underground detectors 
(direct detection), and colliders. 
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served in Detector 3 of Tower 5. These detectors were

near the middle of their respective tower stacks. Fig. 2

illustrates the distribution of events in and near the sig-

nal region of the WIMP-search data set before (top) and

after (bottom) application of the phonon timing criterion.

Fig. 3 shows an alternate view of these events, expressed

in “normalized” versions of yield and timing that are

transformed so that the WIMP acceptance regions of all

detectors coincide.After unblinding, extensive checks of the three candi-

date events revealed no data quality or analysis issues

that would invalidate them as WIMP candidates. The

signal-to-noise on the ionization channel for the three

events (ordered in increasing recoil energy) was measured

to be 6.7σ, 4.9σ, and 5.1σ. A study on possible leakage

into the signal band due to 206Pb recoils from 210Po de-

cays found the expected leakage to be negligible with

an upper limit of < 0.08 events at the 90% confidence

level. The energy distribution of the 206Pb background

was constructed using events in which a coincident α par-

ticle was detected in a detector adjacent to one of the 8

Si detectors used in this analysis.This result constrains the available parameter space

of WIMP dark matter models. We compute upper lim-

its on the WIMP-nucleon scattering cross section using

Yellin’s optimum interval method [25]. We assume a

WIMP mass density of 0.3 GeV/c2/cm3, a most probable

WIMP velocity with respect to the galaxy of 220 km/s,

a mean circular velocity of Earth with respect to the

galactic center of 232 km/s, a galactic escape velocity of

544 km/s [26], and the Helm form factor [27]. Fig. 4

shows the derived upper limits on the spin-independent

WIMP-nucleon scattering cross section at the 90% con-

fidence level (C.L.) from this analysis and a selection of

other recent results. The present data set an upper limit

of 2.4× 10−41 cm2 for a WIMP of mass 10 GeV/c2. We

are completing the calibration of the nuclear recoil energy

scale using the Si-neutron elastic scattering resonant fea-

ture in the 252Cf exposures. This study indicates that our

reconstructed energy may be 10% lower than the true re-

coil energy, which would weaken the upper limit slightly.

Below 20 GeV/c2 the change is well approximated by

shifting the limits parallel to the mass axis by ∼ 7%. In

addition, neutron calibration multiple scattering effects

improve the response to WIMPs by shifting the upper

limit down parallel to the cross-section axis by ∼ 5%.

A model of our known backgrounds, including both

energy and expected rate distributions, was constructed

for each detector and experimental run for each of the

three backgrounds considered: surface electron recoils,

neutron backgrounds, and 206Pb recoils. Simulations of

our background model yield a 5.4% probability of a sta-

tistical fluctuation producing three or more events in our

signal region.
This model of our known backgrounds was used to in-

vestigate the data in the context of a WIMP+background

hypothesis. We performed a profile likelihood analysis,

including the event energies, in which the background
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FIG. 4. Experimental upper limits (90% confidence level) for

the WIMP-nucleon spin-independent cross section as a func-

tion of WIMP mass. We show the limit obtained from the

exposure analyzed in this work alone (blue dotted line), and

combined with the CDMS II Si data set reported in [23, 28]

(blue solid line). Also shown are limits from the CDMS

II Ge standard [17] and low-threshold [29] analysis (dark

and light dashed red), EDELWEISS low-threshold [30] (long-

dashed orange), XENON10 S2-only [31] (dash-dotted green),

and XENON100 [32] (long-dash-dotted green). The filled re-

gions identify possible signal regions associated with data

from CoGeNT [33] (dashed yellow, 90% C.L.), DAMA/LIBRA

[10, 34] (dotted tan, 99.7% C.L.), and CRESST [12, 35] (dash-

dotted pink, 95.45% C.L.) experiments. 68% and 90% C.L.

contours for a possible signal from these data are shown in

light blue. The blue dot shows the maximum likelihood point

at (8.6 GeV/c
2
, 1.9× 10−41

cm2
).

rates were treated as nuisance parameters and the WIMP

mass and cross section were the parameters of interest.

We profiled over probability distribution functions of the

rate for each of our known backgrounds. The highest like-

lihood was found for a WIMP mass of 8.6 GeV/c2 and

a WIMP-nucleon cross section of 1.9×10−41 cm2. The

goodness-of-fit test of this WIMP+background hypoth-

esis results in a p-value of 68%, while the background-

only hypothesis fits the data with a p-value of 4.5%.

A profile likelihood ratio test finds that the data favor

the WIMP+background hypothesis over our background-

only hypothesis with a p-value of 0.19%. Though this

result favors a WIMP interpretation over the known-

background-only hypothesis, we do not believe this result

rises to the level of a discovery.Fig. 4 shows the resulting best-fit region from this

analysis (68% and 90% confidence level contours) on

the WIMP-nucleon cross-section vs. WIMP mass plane.

The 90% C.L. exclusion regions from CDMS II’s Ge

and Si analyses and EDELWEISS low-threshold analy-

sis cover part of this best-fit region, but the results are

overall statistically compatible. There is much stronger

tension with the upper limits from the XENON10 and
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Dark Matter Searching at the LHC

• Effective operator method: model independent, less free parameters.
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Dark Matter Searching at the LHC

• Effective operator method: model independent, less free parameters.

Λ
p

p

χ

χ

j

CAB

Λn
χ̄ΓAχq̄ΓBq

12 7 Interpretation

Table 10: ADD Model observed and expected limits on MD in TeV/c2 as a function of δ at LO
and NLO, with K-factors of 1.5 for δ = 2,3 and 1.4 for δ = 4,5,6.

LO NLO
δ Exp. Limit Obs. Limit Exp. Limit Obs. Limit
2 5.12 5.10 5.70 5.67
3 3.96 3.94 4.31 4.29
4 3.46 3.44 3.72 3.71
5 3.11 3.10 3.32 3.31
6 2.95 2.94 3.13 3.12

The limits on Λ as a function of the DM mass for the vector interaction and the axial-vector
interaction are shown in Figure 6, together with a comparison with limits from the previous
CMS analysis using 5 fb−1 at 7 TeV. The observed and expected limits at the 90% CL on the
DM-nucleon scattering cross section for the vector, axial-vector and scalar operators are shown
in Tables 11, 12, 13 and Figures 7 and 8.

Also considered is the case in which the mediator is light enough to be accessible to the LHC.
Figure 9 shows the observed limits on Λ as a function of the mass of the mediator, assuming
vector interactions and a dark matter mass of 50 GeV/c2 and 500 GeV/c2. The width (Γ) of the
mediator is varied between M/3 and M/8π [13]. It shows the resonant enhancement in the
production cross section once the mass of the mediator is within the kinematic range and can
be produced on-shell. At large mediator mass, the limits on Λ approximate to those obtained
in the effective theory framework [13].
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Figure 6: Limits on the contact interaction scale Λ as a function of the DM mass for the current
analysis using 19.5 fb−1 of 8 TeV data. Also shown is the result from the previous analysis
using 5 fb−1 of 7 TeV data.

The results can also be interpreted in the context of Unparticle production. Shown in Figure 10
are the expected and observed 95% C.L limits on the cross-sections for S = 0 Unparticles with
dU = 1.5, 1.6, 1.7, 1.8 and 1.9 as a function of ΛU for a fixed coupling constant λ = 1. The
observed 95% C.L limit ΛU for these values of dU is shown in Table 14. This can be compared
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Dark Matter Searching at the LHC

• Effective operator method: model independent, less free parameters.
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• The cutoff scale ~ hundreds GeV.

• The typical energy of the jets pass cut ~ hundreds GeV.

• The mass of dark matter ~ hundreds GeV.

• Effective energy of c.m.s ~ TeV.
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vector interactions and a dark matter mass of 50 GeV/c2 and 500 GeV/c2. The width (Γ) of the
mediator is varied between M/3 and M/8π [13]. It shows the resonant enhancement in the
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in Tables 11, 12, 13 and Figures 7 and 8.

Also considered is the case in which the mediator is light enough to be accessible to the LHC.
Figure 9 shows the observed limits on Λ as a function of the mass of the mediator, assuming
vector interactions and a dark matter mass of 50 GeV/c2 and 500 GeV/c2. The width (Γ) of the
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Dark Matter Searching at the LHC

• Beyond EFT? New physics models?

• Supersymmetry, and etc :)

• More than 100 parameters and tens more particles...

• It is too far than a simple improvement of EFT.
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DM with t-channel mediator

• A simple step beyond the EFT.

• Adding a mediator to reduce the dimension of the effective operators 
in the theory to be smaller than 5.
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DM with t-channel mediator

• The effective Lagrangian of a simple t-channel mediator theory can be 
written as

• The quarks in the effective Lagrangian could be right-handed or left-
handed. In the MFV scenario, 

Lχ = λqχ̄φ
∗q + h.c.
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FIG. 2: Diagrams for monojet+� ET processes at the LHC in

the t-channel mediator scenario. (a1,a2) Initial state gluon-

split processes; (b1,b2) initial state gluon-emission processes;

(c) gluon-emission from the t−channel mediator; (d1-d4) me-

diator direct production processes.
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FIG. 3: Diagrams for mediator pair production processes

at the LHC, which leads to di-jet + � ET signal. (a1-a4) Dia-

grams from purely QCD interaction; (b) Diagram from the t-
channel DM exchanging; (c1-c4) Diagrams from the t-channel
Majorana dark matter exchanging.

This paper is organized as follows. In Section II, we de-

scribe the scenario studied in this paper. In Section III,

we discuss leading direct detection channels. In Sec-

tion IV, we present the LHC reach. In Section V, we

combine the reaches of LHC and direct detection, and

compare with the requirement from thermal relic abun-

dance. Section VI contains our conclusion.

II. FRAMEWORK

In the t-channel mediator scenario, we consider inter-

actions of the form

Lχ = λqχ̄φ
∗
q + h.c. , (1)

where q, χ and φ are the quark field, DM field and the

mediator, respectively. For fermionic (scalar) dark mat-

ter, the mediator φ would be a scalar (fermion). The

mediator φ is also necessarily colored.

In general, Eq. (1) may induce flavor changing neutral

current which are strongly constrained by flavor exper-

iments. However, these constraints can be avoided by

imposing the minimal flavor violation (MFV) structure

to the Yukawa couplings [24]. In the quark sector, with-

out turning on the Yukawa couplings, the SM Lagrangian

contains a U(3)Q×U(3)u×U(3)d flavor symmetry. Now,

for simplicity, let’s first assume that χ is a singlet of the

flavor group. Then, to make Lχ invariant, the simplest

choice is to make φ to be the 3-representation of one

of the three U(3) flavor groups. Therefore, in general,

Eq. (1) can be written as

Lχ = λQχ̄PLQφ∗
Q + λuχ̄PRuφ

∗
u + λdχ̄PRdφ

∗
d

+
λ(1)
Quχ̄Hφ∗

QYuPRu

Λ
+

λ(1)
Qdχ̄H̃φ∗

QYdPRd

Λ

+
λ(2)
QuQ̄HYuφuPRχ

Λ
+

λ(2)
QdQ̄H̃YdφdPRχ

Λ
+h.c. , (2)

where H is the Higgs field and H̃ = iσ2H
∗
, Yu and Yd

are the two Yukawa couplings. For the monojet+ � ET
processes, the parton level processes are shown in Fig. 2,

where we can see that the at least one quark or anti-quark

initial state is needed. Therefore, all the terms propor-

tional to Yu or Yd are in general suppressed by the small

masses of the quarks in first two generations. Therefore,

in the case that χ is a SU(2) singlet, to study the generic

feature of monojet+ � ET constraint on the “t-channel”

completion of DM models, we can neglect the terms pro-

portional to the Yukawa couplings. Furthermore, the sig-

natures in collider or direct detection experiments are not

sensitive to the chirality of the quarks unless λQ,u,d are

tuned to have some special relations. Therefore, in this

work, in the case that χ is a SM singlet, we will only keep

the λu and λd terms and assume λu = λd ≡ λ. To sim-

plify our presentation, we also assume that the φu and

φd are degenerate and Mφu = Mφd ≡ Mφ. Then, the

Lagrangian can be simplified as

Lχ = λχ̄LqRφ
∗
+ h.c. . (3)

For simplicity, we will focus on the case in which only

right-handed quarks are coupled. For the coupling with

left handed quarks, minimally, either the mediator or the

DM needs to be in a SU(2)L doublet. There could be

additional signals if DM is part of a larger multiplet.

However, we will limit ourselves to the simpler case of

singlet DM for this paper.

We consider the case in which the all the quark flavors

are coupled. For light mediator, this immediately raises

the concern of violating stringent flavor constraints. The

best way to satisfy such constraints is probably to intro-

duce either the DM or the mediator (or both) as part of
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This paper is organized as follows. In Section II, we de-

scribe the scenario studied in this paper. In Section III,

we discuss leading direct detection channels. In Sec-

tion IV, we present the LHC reach. In Section V, we

combine the reaches of LHC and direct detection, and

compare with the requirement from thermal relic abun-

dance. Section VI contains our conclusion.
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In the t-channel mediator scenario, we consider inter-

actions of the form

Lχ = λqχ̄φ
∗
q + h.c. , (1)

where q, χ and φ are the quark field, DM field and the

mediator, respectively. For fermionic (scalar) dark mat-

ter, the mediator φ would be a scalar (fermion). The

mediator φ is also necessarily colored.

In general, Eq. (1) may induce flavor changing neutral

current which are strongly constrained by flavor exper-

iments. However, these constraints can be avoided by

imposing the minimal flavor violation (MFV) structure

to the Yukawa couplings [24]. In the quark sector, with-

out turning on the Yukawa couplings, the SM Lagrangian

contains a U(3)Q×U(3)u×U(3)d flavor symmetry. Now,

for simplicity, let’s first assume that χ is a singlet of the

flavor group. Then, to make Lχ invariant, the simplest

choice is to make φ to be the 3-representation of one

of the three U(3) flavor groups. Therefore, in general,

Eq. (1) can be written as
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where H is the Higgs field and H̃ = iσ2H
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, Yu and Yd

are the two Yukawa couplings. For the monojet+ � ET
processes, the parton level processes are shown in Fig. 2,

where we can see that the at least one quark or anti-quark

initial state is needed. Therefore, all the terms propor-

tional to Yu or Yd are in general suppressed by the small

masses of the quarks in first two generations. Therefore,

in the case that χ is a SU(2) singlet, to study the generic

feature of monojet+ � ET constraint on the “t-channel”

completion of DM models, we can neglect the terms pro-

portional to the Yukawa couplings. Furthermore, the sig-

natures in collider or direct detection experiments are not

sensitive to the chirality of the quarks unless λQ,u,d are

tuned to have some special relations. Therefore, in this

work, in the case that χ is a SM singlet, we will only keep

the λu and λd terms and assume λu = λd ≡ λ. To sim-

plify our presentation, we also assume that the φu and

φd are degenerate and Mφu = Mφd ≡ Mφ. Then, the

Lagrangian can be simplified as

Lχ = λχ̄LqRφ
∗
+ h.c. . (3)

For simplicity, we will focus on the case in which only

right-handed quarks are coupled. For the coupling with

left handed quarks, minimally, either the mediator or the

DM needs to be in a SU(2)L doublet. There could be

additional signals if DM is part of a larger multiplet.

However, we will limit ourselves to the simpler case of

singlet DM for this paper.

We consider the case in which the all the quark flavors

are coupled. For light mediator, this immediately raises

the concern of violating stringent flavor constraints. The

best way to satisfy such constraints is probably to intro-

duce either the DM or the mediator (or both) as part of
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Direct detection

• Direct detection

• The direct detection cross section from this effective operator has 
been well studied.

• There are other operators induced by the t-channel mediator!

• Those operators are dim-7 and loop-induced from the t-channel 
mediator.

• The chiral symmetry enforces the Wilson coefficients to be 
proportional to the mass of the WIMP.

O1 =
λ2

2M2
φ

χ̄LγµχLq̄Rγ
µqR

O2 =
αS

4π
GaµνGa

µνχ
2, O3 = mq q̄qχ

2

C2 ∼ λ2Mχ

M4
φ

, C3 ∼ λ2m2
tMχ

32π2M2
φv

2
ewM

2
h
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LHC phenomenology I: monojet

• Dark matter production process: monojet + missing ET.

• New contributions:

(c) ---- from dim-7 operator

- Higher suppressed by the mediator mass 

- No logarithm enhancement as the initial state QCD jet

(d1-d4) ---- WIMP-mediator associated production

- Two-body phase space enhancement

- High pT jet from heavy mediator decay

O8 = − igSλ2

M4
φ

T a
ijA

a
µ (χ̄PRqj)

←→
∂ µ (q̄iPLχ)
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LHC phenomenology I: monojet

• Dark matter production process: monojet + missing ET.2
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This paper is organized as follows. In Section II, we de-

scribe the scenario studied in this paper. In Section III,

we discuss leading direct detection channels. In Sec-

tion IV, we present the LHC reach. In Section V, we

combine the reaches of LHC and direct detection, and

compare with the requirement from thermal relic abun-

dance. Section VI contains our conclusion.

II. FRAMEWORK

In the t-channel mediator scenario, we consider inter-

actions of the form

Lχ = λqχ̄φ
∗
q + h.c. , (1)
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mediator, respectively. For fermionic (scalar) dark mat-

ter, the mediator φ would be a scalar (fermion). The
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best way to satisfy such constraints is probably to intro-

duce either the DM or the mediator (or both) as part of
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LHC phenomenology I: monojet

• Dark matter production process: monojet + missing ET.2
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FIG. 2: Diagrams for monojet+� ET processes at the LHC in

the t-channel mediator scenario. (a1,a2) Initial state gluon-

split processes; (b1,b2) initial state gluon-emission processes;

(c) gluon-emission from the t−channel mediator; (d1-d4) me-

diator direct production processes.

g

g

g
φ

φ∗

(a1)

g

g

φ

φ

φ∗

(a2)

g

g

φ

φ∗

(a3)

q

q̄

g
φ

φ∗

(a4)

q

q̄

χ

φ

φ∗

(b)

q

q

χ

φ

φ

(c1)

q

q

χ

φ

φ

(c2)

q̄

q̄

χ

φ∗

φ∗

(c3)

q̄

q̄

χ

φ∗

φ∗

(c4)

FIG. 3: Diagrams for mediator pair production processes

at the LHC, which leads to di-jet + � ET signal. (a1-a4) Dia-

grams from purely QCD interaction; (b) Diagram from the t-
channel DM exchanging; (c1-c4) Diagrams from the t-channel
Majorana dark matter exchanging.

This paper is organized as follows. In Section II, we de-

scribe the scenario studied in this paper. In Section III,

we discuss leading direct detection channels. In Sec-

tion IV, we present the LHC reach. In Section V, we

combine the reaches of LHC and direct detection, and

compare with the requirement from thermal relic abun-

dance. Section VI contains our conclusion.

II. FRAMEWORK

In the t-channel mediator scenario, we consider inter-

actions of the form

Lχ = λqχ̄φ
∗
q + h.c. , (1)

where q, χ and φ are the quark field, DM field and the

mediator, respectively. For fermionic (scalar) dark mat-

ter, the mediator φ would be a scalar (fermion). The

mediator φ is also necessarily colored.

In general, Eq. (1) may induce flavor changing neutral

current which are strongly constrained by flavor exper-

iments. However, these constraints can be avoided by

imposing the minimal flavor violation (MFV) structure

to the Yukawa couplings [24]. In the quark sector, with-

out turning on the Yukawa couplings, the SM Lagrangian

contains a U(3)Q×U(3)u×U(3)d flavor symmetry. Now,

for simplicity, let’s first assume that χ is a singlet of the

flavor group. Then, to make Lχ invariant, the simplest

choice is to make φ to be the 3-representation of one

of the three U(3) flavor groups. Therefore, in general,

Eq. (1) can be written as

Lχ = λQχ̄PLQφ∗
Q + λuχ̄PRuφ

∗
u + λdχ̄PRdφ

∗
d

+
λ(1)
Quχ̄Hφ∗

QYuPRu

Λ
+

λ(1)
Qdχ̄H̃φ∗

QYdPRd

Λ

+
λ(2)
QuQ̄HYuφuPRχ

Λ
+

λ(2)
QdQ̄H̃YdφdPRχ

Λ
+h.c. , (2)

where H is the Higgs field and H̃ = iσ2H
∗
, Yu and Yd

are the two Yukawa couplings. For the monojet+ � ET
processes, the parton level processes are shown in Fig. 2,

where we can see that the at least one quark or anti-quark

initial state is needed. Therefore, all the terms propor-

tional to Yu or Yd are in general suppressed by the small

masses of the quarks in first two generations. Therefore,

in the case that χ is a SU(2) singlet, to study the generic

feature of monojet+ � ET constraint on the “t-channel”

completion of DM models, we can neglect the terms pro-

portional to the Yukawa couplings. Furthermore, the sig-

natures in collider or direct detection experiments are not

sensitive to the chirality of the quarks unless λQ,u,d are

tuned to have some special relations. Therefore, in this

work, in the case that χ is a SM singlet, we will only keep

the λu and λd terms and assume λu = λd ≡ λ. To sim-

plify our presentation, we also assume that the φu and

φd are degenerate and Mφu = Mφd ≡ Mφ. Then, the

Lagrangian can be simplified as

Lχ = λχ̄LqRφ
∗
+ h.c. . (3)

For simplicity, we will focus on the case in which only

right-handed quarks are coupled. For the coupling with

left handed quarks, minimally, either the mediator or the

DM needs to be in a SU(2)L doublet. There could be

additional signals if DM is part of a larger multiplet.

However, we will limit ourselves to the simpler case of

singlet DM for this paper.

We consider the case in which the all the quark flavors

are coupled. For light mediator, this immediately raises

the concern of violating stringent flavor constraints. The

best way to satisfy such constraints is probably to intro-

duce either the DM or the mediator (or both) as part of
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LHC phenomenology I: monojet

• Dark matter production process: monojet + missing ET.

• New contributions:

(c) ---- from dim-7 operator

- Higher suppressed by the mediator mass 

- No logarithm enhancement as the initial state QCD jet

(d1-d4) ---- WIMP-mediator associated production

- Two-body phase space enhancement

- High pT jet from heavy mediator decay

O8 = − igSλ2

M4
φ

T a
ijA

a
µ (χ̄PRqj)

←→
∂ µ (q̄iPLχ)

• The most recent monojet+missing ET constraint from the LHC is from 
CMS collaboration with 19.5 fb-1 dataset from 8 TeV proton-proton 
collision.
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LHC phenomenology I: monojet

• We use MadGraph5/MadEvent generate parton level event, shower it 
using PYTHIA6.4 and simulate the detector effects using PGS4 with 
anti-KT jet algorithm with a distance parameter of 0.5.

• Cuts:

Only one central jet

At most two jets s.t. 

No isolated electron with                                                   or

No isolated muon with

 

For events with a second jet, 

pT > 110 GeV, |η| < 2.4

pT > 30 GeV, |η| < 4.5

pT > 10 GeV, |η| < 1.44

pT > 10 GeV, |η| < 2.1

1.56 < |η| < 2.5

� ET > 120 GeV

∆φj1j2 < 2.5

• Events which pass those cuts are separated in seven signal regions 
according to the missing ET in the event.
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LHC phenomenology I: monojet

• Checking our simulation using vector current contact effective 
operator.
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LHC phenomenology I: monojet

• Fix WIMP mass (5 GeV)
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LHC phenomenology II: dijet

• The mediator is colored particle which can be produced by purely 
QCD process.
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FIG. 2: Diagrams for monojet+� ET processes at the LHC in

the t-channel mediator scenario. (a1,a2) Initial state gluon-

split processes; (b1,b2) initial state gluon-emission processes;

(c) gluon-emission from the t−channel mediator; (d1-d4) me-

diator direct production processes.
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FIG. 3: Diagrams for mediator pair production processes

at the LHC, which leads to di-jet + � ET signal. (a1-a4) Dia-

grams from purely QCD interaction; (b) Diagram from the t-
channel DM exchanging; (c1-c4) Diagrams from the t-channel
Majorana dark matter exchanging.

This paper is organized as follows. In Section II, we de-

scribe the scenario studied in this paper. In Section III,

we discuss leading direct detection channels. In Sec-

tion IV, we present the LHC reach. In Section V, we

combine the reaches of LHC and direct detection, and

compare with the requirement from thermal relic abun-

dance. Section VI contains our conclusion.

II. FRAMEWORK

In the t-channel mediator scenario, we consider inter-

actions of the form

Lχ = λqχ̄φ
∗
q + h.c. , (1)

where q, χ and φ are the quark field, DM field and the

mediator, respectively. For fermionic (scalar) dark mat-

ter, the mediator φ would be a scalar (fermion). The

mediator φ is also necessarily colored.

In general, Eq. (1) may induce flavor changing neutral

current which are strongly constrained by flavor exper-

iments. However, these constraints can be avoided by

imposing the minimal flavor violation (MFV) structure

to the Yukawa couplings [24]. In the quark sector, with-

out turning on the Yukawa couplings, the SM Lagrangian

contains a U(3)Q×U(3)u×U(3)d flavor symmetry. Now,

for simplicity, let’s first assume that χ is a singlet of the

flavor group. Then, to make Lχ invariant, the simplest

choice is to make φ to be the 3-representation of one

of the three U(3) flavor groups. Therefore, in general,

Eq. (1) can be written as

Lχ = λQχ̄PLQφ∗
Q + λuχ̄PRuφ

∗
u + λdχ̄PRdφ

∗
d

+
λ(1)
Quχ̄Hφ∗

QYuPRu

Λ
+

λ(1)
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QYdPRd

Λ

+
λ(2)
QuQ̄HYuφuPRχ

Λ
+

λ(2)
QdQ̄H̃YdφdPRχ

Λ
+h.c. , (2)

where H is the Higgs field and H̃ = iσ2H
∗
, Yu and Yd

are the two Yukawa couplings. For the monojet+ � ET
processes, the parton level processes are shown in Fig. 2,

where we can see that the at least one quark or anti-quark

initial state is needed. Therefore, all the terms propor-

tional to Yu or Yd are in general suppressed by the small

masses of the quarks in first two generations. Therefore,

in the case that χ is a SU(2) singlet, to study the generic

feature of monojet+ � ET constraint on the “t-channel”

completion of DM models, we can neglect the terms pro-

portional to the Yukawa couplings. Furthermore, the sig-

natures in collider or direct detection experiments are not

sensitive to the chirality of the quarks unless λQ,u,d are

tuned to have some special relations. Therefore, in this

work, in the case that χ is a SM singlet, we will only keep

the λu and λd terms and assume λu = λd ≡ λ. To sim-

plify our presentation, we also assume that the φu and

φd are degenerate and Mφu = Mφd ≡ Mφ. Then, the

Lagrangian can be simplified as

Lχ = λχ̄LqRφ
∗
+ h.c. . (3)

For simplicity, we will focus on the case in which only

right-handed quarks are coupled. For the coupling with

left handed quarks, minimally, either the mediator or the

DM needs to be in a SU(2)L doublet. There could be

additional signals if DM is part of a larger multiplet.

However, we will limit ourselves to the simpler case of

singlet DM for this paper.

We consider the case in which the all the quark flavors

are coupled. For light mediator, this immediately raises

the concern of violating stringent flavor constraints. The

best way to satisfy such constraints is probably to intro-

duce either the DM or the mediator (or both) as part of
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LHC phenomenology II: dijet

• The total cross section is calculated using MadGraph5/MadEvent

• A typical value of the K-factor is smaller than 1.05. We will neglect it in 
our calculation.

• We compare the parton level cross section with the unfolded result of 
squark search given by the CMS collaboration.
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Figure 8: Observed upper limit on the production cross section at 95% CL (indicated by the

colour scale) as a function of the parent and LSP sparticle masses for simplified models involv-

ing: the direct production of first- and second-generation squarks (D1, top left) and bottom

squarks (D2, top right); and pair-produced gluinos each decaying to the LSP and pairs of light

quarks (G1, middle), bottom quarks (G2, bottom left), or top quarks (G3, bottom right). The

black solid thick line indicates the observed exclusion assuming NLO+NLL SUSY production

cross section. The black solid thin lines represent the observed exclusions when varying the

cross section by its theoretical uncertainty. The purple dashed thick (thin) line indicates the

median (±1σ) expected exclusion.
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LHC phenomenology II: dijet

• The constraint to the 
mediator mass depends 
on λ.

• 800 GeV med

_ _ Dirac

..... Majorana

• 1.2 TeV med

_ _ Dirac

..... Majorana

• Light DM: monojet 
dominant.

• Heavy DM: dijet dominant.

5

ity from CMS collaboration [34] 1. To use their limit,
we generate signal events using MadGraph5/MadEvent
[31]. We use CTEQ6L1 parton distribution function
(PDF) [32] with 5 flavor quarks in initial state. The par-
ton level events are showered using PYTHIA6.4 [36] and
the detector simulation is done using PGS4 with anti-
kT jet algorithm with a distance parameter of 0.5. We
require the signal events passing the cuts as following:

• Only one central jet which satisfies pT > 110 GeV,
|η| < 2.4.

• At most two jets which satisfy pT > 30 GeV, |η| <
4.5.

• No isolated electron whose pT > 10 GeV, |η| < 1.44
or 1.56 < |η| < 2.5.

• No isolated muon whose pT > 10 GeV, |η| < 2.1.

• � ET > 120 GeV.

• For events with a second jet, ∆φj1j2 < 2.5.

Events which pass those cuts are separated in seven sig-
nal regions according to the � ET in the event; � ET >
200, 300, 350, 400, 450, 500, 550 GeV. The observed upper
limit is 4695, 2035, 882, 434, 157, 135 and 131 events for
each region [34]. In this work, the � ET > 450 GeV chan-
nel is used since it gives the most stringent constraint.
The leading order parton level Feynman diagrams are

shown in Fig. 2, where for the qq̄ → gχχ(χ̄) process, a
gluon can be emitted from both the initial quarks as well
as the intermediate φ. In the small Mφ region where the
mediator can be produced on shell, the qg → qχχ(χ̄)
process shown in Fig. 2(d1-d4) becomes a two-body pro-
cess. Apart from the enhancement from the phase space,
this process also benefits from larger parton distribution
function of the gluon compared to the anti-quark in the
qq̄ → gχχ(χ̄) process. Therefore, this process dominates
if φ can be produced on shell. However, in the larger Mφ

region where φ cannot be produced on shell, the scat-
tering matrix element contributed from (c) and (d1,d2)
is suppressed by M−2

φ , which is therefore subdominant.
We note that diagrams (d3) and (d4) give the dominant
contribution even in the heavy mediator case, especially
a large jet pT cut is added. This is easy to understand.
The jet which comes from the initial state radiation has
a collinear singularity and tends to follow the initial state
parton moving direction, while the jet coming from the
effective operator does not. The cross section from the
dimension 8 operator does depend on the jet pT cut due
to the phase space integral. But such a polynomial de-
pendence drops much slower than the double logarithm
dependence in initial state radiation process from QCD

1 ATLAS collaboration also publish their result in this chan-
nel with 8 TeV pp collision, with lower luminosity which is
10fb−1 [35]

when the pT,cut increases. Thus, the validity of using a
contact operator depends not only on whether the medi-
ator is light to be produced at the LHC, but also on the
jet pT cut. Considering the effect from the PDF, in the
heavy mediator case, the most important contribution
will come from the diagrams (d3) and the contribution
from (c) could be negligible generally.
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FIG. 4: The constraints to the t-channel mediator model from

both monojet+ � ET and di-jet+ � ET searches at the 8 TeV LHC

with 19.5 fb
−1

integral luminosity. Both mono-jet and di-jet

constraints are shown.

In the region that φ can be produced, the momentum
of the jet produced by the decay of φ is about (M2

φ −
M2

χ)/2Mφ in the rest frame of φ. Therefore, in the case
that Mχ � Mφ, the pT distribution of the jet is flat
around Mφ/2. Therefore, the limit benefits from a large
pT cut of the jet, or equivalently a large � ET cut. We
find � ET > 500 GeV gives the most stringent constraint
on this model.
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LHC phenomenology II: dijet

• The constraint to the 
mediator mass depends 
on λ.

• 800 GeV med

_ _ Dirac

..... Majorana

• 1.2 TeV med

_ _ Dirac

..... Majorana

• Light DM: monojet 
dominant.

• Heavy DM: dijet dominant.
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we generate signal events using MadGraph5/MadEvent
[31]. We use CTEQ6L1 parton distribution function
(PDF) [32] with 5 flavor quarks in initial state. The par-
ton level events are showered using PYTHIA6.4 [36] and
the detector simulation is done using PGS4 with anti-
kT jet algorithm with a distance parameter of 0.5. We
require the signal events passing the cuts as following:

• Only one central jet which satisfies pT > 110 GeV,
|η| < 2.4.

• At most two jets which satisfy pT > 30 GeV, |η| <
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• No isolated electron whose pT > 10 GeV, |η| < 1.44
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each region [34]. In this work, the � ET > 450 GeV chan-
nel is used since it gives the most stringent constraint.
The leading order parton level Feynman diagrams are

shown in Fig. 2, where for the qq̄ → gχχ(χ̄) process, a
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as the intermediate φ. In the small Mφ region where the
mediator can be produced on shell, the qg → qχχ(χ̄)
process shown in Fig. 2(d1-d4) becomes a two-body pro-
cess. Apart from the enhancement from the phase space,
this process also benefits from larger parton distribution
function of the gluon compared to the anti-quark in the
qq̄ → gχχ(χ̄) process. Therefore, this process dominates
if φ can be produced on shell. However, in the larger Mφ

region where φ cannot be produced on shell, the scat-
tering matrix element contributed from (c) and (d1,d2)
is suppressed by M−2

φ , which is therefore subdominant.
We note that diagrams (d3) and (d4) give the dominant
contribution even in the heavy mediator case, especially
a large jet pT cut is added. This is easy to understand.
The jet which comes from the initial state radiation has
a collinear singularity and tends to follow the initial state
parton moving direction, while the jet coming from the
effective operator does not. The cross section from the
dimension 8 operator does depend on the jet pT cut due
to the phase space integral. But such a polynomial de-
pendence drops much slower than the double logarithm
dependence in initial state radiation process from QCD

1 ATLAS collaboration also publish their result in this chan-
nel with 8 TeV pp collision, with lower luminosity which is
10fb−1 [35]

when the pT,cut increases. Thus, the validity of using a
contact operator depends not only on whether the medi-
ator is light to be produced at the LHC, but also on the
jet pT cut. Considering the effect from the PDF, in the
heavy mediator case, the most important contribution
will come from the diagrams (d3) and the contribution
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FIG. 4: The constraints to the t-channel mediator model from

both monojet+ � ET and di-jet+ � ET searches at the 8 TeV LHC

with 19.5 fb
−1

integral luminosity. Both mono-jet and di-jet

constraints are shown.

In the region that φ can be produced, the momentum
of the jet produced by the decay of φ is about (M2

φ −
M2

χ)/2Mφ in the rest frame of φ. Therefore, in the case
that Mχ � Mφ, the pT distribution of the jet is flat
around Mφ/2. Therefore, the limit benefits from a large
pT cut of the jet, or equivalently a large � ET cut. We
find � ET > 500 GeV gives the most stringent constraint
on this model.
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ity from CMS collaboration [34] 1. To use their limit,
we generate signal events using MadGraph5/MadEvent
[31]. We use CTEQ6L1 parton distribution function
(PDF) [32] with 5 flavor quarks in initial state. The par-
ton level events are showered using PYTHIA6.4 [36] and
the detector simulation is done using PGS4 with anti-
kT jet algorithm with a distance parameter of 0.5. We
require the signal events passing the cuts as following:

• Only one central jet which satisfies pT > 110 GeV,
|η| < 2.4.

• At most two jets which satisfy pT > 30 GeV, |η| <
4.5.

• No isolated electron whose pT > 10 GeV, |η| < 1.44
or 1.56 < |η| < 2.5.

• No isolated muon whose pT > 10 GeV, |η| < 2.1.

• � ET > 120 GeV.

• For events with a second jet, ∆φj1j2 < 2.5.

Events which pass those cuts are separated in seven sig-
nal regions according to the � ET in the event; � ET >
200, 300, 350, 400, 450, 500, 550 GeV. The observed upper
limit is 4695, 2035, 882, 434, 157, 135 and 131 events for
each region [34]. In this work, the � ET > 450 GeV chan-
nel is used since it gives the most stringent constraint.
The leading order parton level Feynman diagrams are

shown in Fig. 2, where for the qq̄ → gχχ(χ̄) process, a
gluon can be emitted from both the initial quarks as well
as the intermediate φ. In the small Mφ region where the
mediator can be produced on shell, the qg → qχχ(χ̄)
process shown in Fig. 2(d1-d4) becomes a two-body pro-
cess. Apart from the enhancement from the phase space,
this process also benefits from larger parton distribution
function of the gluon compared to the anti-quark in the
qq̄ → gχχ(χ̄) process. Therefore, this process dominates
if φ can be produced on shell. However, in the larger Mφ

region where φ cannot be produced on shell, the scat-
tering matrix element contributed from (c) and (d1,d2)
is suppressed by M−2

φ , which is therefore subdominant.
We note that diagrams (d3) and (d4) give the dominant
contribution even in the heavy mediator case, especially
a large jet pT cut is added. This is easy to understand.
The jet which comes from the initial state radiation has
a collinear singularity and tends to follow the initial state
parton moving direction, while the jet coming from the
effective operator does not. The cross section from the
dimension 8 operator does depend on the jet pT cut due
to the phase space integral. But such a polynomial de-
pendence drops much slower than the double logarithm
dependence in initial state radiation process from QCD

1 ATLAS collaboration also publish their result in this chan-
nel with 8 TeV pp collision, with lower luminosity which is
10fb−1 [35]

when the pT,cut increases. Thus, the validity of using a
contact operator depends not only on whether the medi-
ator is light to be produced at the LHC, but also on the
jet pT cut. Considering the effect from the PDF, in the
heavy mediator case, the most important contribution
will come from the diagrams (d3) and the contribution
from (c) could be negligible generally.
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• We compare the constraints to the t-channel mediator model from 
direct detection and 8 TeV LHC.

• The difference between the t-channel mediator model and the 
effective operator approximation is shown clearly in the figures.
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Conclusion

• We study a simplified t-channel UV completion model where the 
interaction between DM and SM particles are mediated by colored 
mediators couples to the DM particle and the right-handed quarks.

• In this scenario, if the DM particle is Dirac, the dominant direct detection 
signal is SI, and the monojet+missing ET search starts to be sensitive to 
the interesting parameter space in the light DM region. 

• In the case that the DM particle is Majorana, the dominant direct 
detection signal is SD, and the monojet+missing ET signal is stronger in 
the region that DM mass is smaller than a hundred GeV, and dijet
+missing ET is more significant for heavier dark matter.

• Additional annihilation processes are needed for Dirac DM to give 
correct relic abundance. For Majorana DM, there is still allowed 
parameter region which can gives correct relic abundance.
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