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WHY SUPERSYMMETRY?

•Naturalness

•Gauge Coupling Unification

•Dark Matter

Recent experimental results make this look a 
little shakier than before....
(This is a review talk; apologies for omissions and idiosyncracies)



NATURALNESS
An Observation
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Consider the diagrams in Fig. 1. We’ve already observed that the one at left is problematic: it’s a
renormalization of an external line, so we don’t want to include it when we compute a loop amplitude. In
shamplitude calculations, it shows up as unpleasant 1

s12...(n−1)
→ ∞ factors in the amplitudes we’re trying

to build the shamplitude out of, which we are currently removing by hand.
The other kind of bubble diagram with one gluon connected at one end is shown on the right in Fig. 1.

It has a two-particle vertex at the other end. As a result, it has the structure:

�
d4�

(2π)4
�1µ (2�µ + kµ1 ) J(k2, . . . kj) · J(kj+1, . . . kn)

(�2 −m2)((�+ k1)2 −m2)
. (1)

Notice that this always contributes 0 to the loop integral: �1 · k1 = 0, and the bubble integral, linear in �µ,
can only be proportional to kµ1 , because all dependence on the other momenta factors out of the integrand.

So, we can in fact drop every diagram with only one gluon connected on one side of a bubble. It’s tempting
to try to inductively turn this into a procedure for generating shamplitudes only from other shamplitudes,
not from amplitudes, but the argument doesn’t work. It would be nice to do something more systematic
than dropping terms by hand. Is there a nice procedure that makes use of this fact?

At least for the 4-point shamplitude, it means computing it directly from Feynman diagrams only involves
summing up nine diagrams (Fig. 2). We can eliminate four of these with a convenient gauge choice.

Four-point loops from Feynman diagrams

If we want to compute the + + ++ amplitude, we can make �i · �j = 0 simply by taking �i =
µλ̃i

�µ i� for all i.

In the + + +− case, we can make �i · �j = 0 by taking �i =
λ4λ̃i
�4 i� for i = 1, 2, 3 and �4 = λ4λ̃1

[4 1] . Thus, we can

discard all Feynman diagrams with 4-point (2-scalar 2-gluon) vertices. The remaining diagrams are boxes,
triangles, and the bubble with two particles on each side attached at 3-gluon vertices.

The box diagram is:

16

�
d4�

(2π)4
�1 · � �2 · (�+ k1) �3 · (�− k4) �4 · �

(�2 −m2)((�+ k1)2 −m2)((�+ k1 + k2)2 −m2)((�− k4)2 −m2)
. (2)
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Higgs potential -μ2|H|2+λ|H|4: large quantum corrections 
to the mass2 term.
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Either the stop is light, or Higgs potential is finely-tuned.



Martin White                                                             11                                    University of Melbourne

All exclusion limits on one plotDIRECT STOP LIMITS

NEW this summer! ATLAS-CONF-2012-070/ 
071/073/074; CMS-PAS-SUS-12-009, SUS-11-022, ...



Martin White                                                             11                                    University of Melbourne

All exclusion limits on one plotDIRECT STOP LIMITS

D
if
fic

ul
t 

de
ge

ne
ra

te
 r

eg
io

n

NEW this summer! ATLAS-CONF-2012-070/ 
071/073/074; CMS-PAS-SUS-12-009, SUS-11-022, ...



TARGETING STOPS
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Figure 6: ∆φ(�+, �−) for tt̄ production, t̃¯̃t production, and tt̄ production with spin correlation
turned off (i.e., the differential rates for production and decay are factorized and we randomize the
top helicities in between). Notice that, from the point of view of this variable, stops are essentially
the same as spin-uncorrelated tops. Also, polarization effects are small, as left- and right-handed
stops have the same distribution.

hypothesis that a spin-correlated tt̄ sample has O(10%) contamination from scalar events,

which approximately look like spin-uncorrelated tops.3

When the LSPs are soft, stop events are similar to top pair events without correlation.

This is illustrated in Figure 6, which shows one distribution, ∆φ(�+, �−), which is sensitive

to spin correlations, and for which stops look like tops with spin correlation turned off. We

have calculated the observable for tops with MC@NLO [72, 73] at parton level, and checked

that corrections from varying the top mass and the renormalization and factorization scales

are small relative to the shift that would arise from adding a sample of stops to the tops.

This observable has been studied by ATLAS to probe the existence of spin correlations in

tt̄ production, but so far only in early data and with rather large error bars [74].

In order to confirm the SM top pair spin correlation Ref. [45] proposed a method using

full matrix elements with and without spin correlation. This method has been implemented

experimentally in Tevatron searches [75, 76], which observed evidence for spin correlation

in both the dileptonic and semileptonic channels. Since many more top events are produced

at the LHC than at the Tevatron, we are expecting a more precise measurement at the

LHC of the tt̄ spin correlation. Any deviation from the SM prediction will be a sign of

new physics. In the presence of light stops, we will observe a mixture of correlated and

uncorrelated top pairs. In the following, we discuss the use of the matrix element method

in stop searches. We concentrate on the dileptonic channel in the following discussion.

3One other effect that could play a role in angular distributions turns out to be unimportant for us: the

stop can be mostly right-handed or mostly left-handed (as some theoretical models predict; see e.g. [24]),

and so the tops coming from the stop decays can be polarized. While it can be an appreciable effect if the

mass splitting between top and stop is large [70, 71], it is a small effect in the stealthy regime, as we have

checked explicitly. Hence, we will not discuss it further.

– 10 –

In the degenerate region that 
isn’t being probed well by 
missing energy searches, may 
be useful to supplement with 
spin correlations or rapidity 
differences (Z. Han, A. Katz, D. 
Krohn, M. Reece, 1205.5808)

Can be combined with various proposals using missing 
energy and boosts: Plehn et al 1102.0557 & 1205.2696; Bai 
et al 1203.4813; Alves et al. 1205.5805; Kaplan et al. 
1205.5816, ... 



OTHER RECENT RESULTS
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Figure 2: Observed and expected 95% CL limit contours for chargino and neutralino production in the

pMSSM for M1 = 100GeV (top left), M1 = 140GeV (top right) and M1 = 250GeV (bottom). The regions

with low values of M2 and µ are the excluded ones for all values of M1 = 100GeV. The expected and

observed limits are calculated without signal cross-section uncertainty taken into account. The yellow

band is the ±1σ experimental uncertainty on the expected limit. The red dashed band is the ±1σ signal

theory uncertainty on the observed limit. Linear interpolation is used to account for the discreteness

of the signal grids. The exclusion contours are optimized by applying in each signal grid point the CL

values from the most sensitive signal region (lowest expected CL) for M1 = 100GeV and 140GeV. Signal

region SR1a is used for M1 = 250GeV.
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Electroweak production beginning 
to be probed (ATLAS-
CONF-2012-077)
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Figure 5: Same as Fig. 4, but for 8 TeV data.
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Figure 6: Diagrams for models B1 (left) and B2 (right).

improved by about 80 and 40 GeV, respectively.

8 Conclusions
We have presented preliminary results of a search for same-sign dileptons with b-jets using the
CMS detector at the LHC based on a 3.95 fb−1 data sample of pp collisions at

√
s = 8 TeV. This

search is a natural extension of an equivalent search at 7 TeV [2]. No significant deviations from
the SM expectations were observed at 7 TeV, and at 8 TeV the conclusion has not changed.

The results have been used to set upper limit on σ(pp → tt) < 0.39 pb and σ(pp → t̄t̄) < 1.51
pb at 95% CL. We also exclude gluinos with masses up to approximately 880 GeV if they decay
into stop pairs or sbottom pairs. Finally, we place a lower limit on the bottom squark mass of
408 GeV. Note that, as it is often the case, the limits on SUSY particles are model dependent,
since we have assumed that the stop and sbottom decay as t̃1 → tχ̃0

1 and b̃1 → tχ̃−
1 , respectively.

In the latter case, we have also assumed χ̃−
1 → W−χ̃0

1.
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Gluinos decaying through 
tops (CMS PAS-
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6 7 Models of new physics
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) GeVg~m(
400 500 600 700 800 900 1000 1100

) G
eV

0 1!"
m

(

100
200
300
400
500
600

700
800

-1 = 4.98 fbint = 7 TeV, LsCMS, 

Same Sign dileptons with btag selection
# 1 ± NLO+NLL# = prod#Exclusion 

) GeVg~m(
400 500 600 700 800 900 1000

) G
eV

1t~
m

(

100
200
300
400
500
600
700
800
900

1000
-1 = 4.98 fbint = 7 TeV, LsCMS, 

Same Sign dileptons with btag selection
! 1 ± NLO+NLL! = prod!Exclusion 

) = 50 GeV0
1
"#m(

) = 150 GeV0
1
"#m(

Figure 4: Results from the 2011 7 TeV CMS run of Ref. [2]. Left plot: exclusion (95 % CL) in the
m(χ̃0

1)− m(g̃) plane for model A1 (gluino decay via virtual top squarks). Right plot: exclusion
(95% CL) in the m(t̃1)− m(g̃) plane for model A2 (gluino decay to on-shell top squarks). The
lines represent the kinematic boundaries of the models. The regions to the left of the bands,
and within the kinematic boundaries, are excluded; the thicknesses of the bands represent
the theoretical uncertainties on the gluino pair production cross section from scale and parton
distribution functions (pdf) variations. In the case of model A2 we show results for m(χ̃0

1) = 50
GeV (red, with dashed lines for the kinematic boundaries) and m(χ̃0

1) = 150 GeV (blue, with
solid line for the kinematic boundary).

The exclusion from our 7 TeV search of Ref. [2] is shown in Fig. 4. The equivalent results from
this analysis at 8 TeV are shown in Fig. 5. The 2011 limits obtained at 7 TeV have been extended
by approximately 80 GeV in gluino mass.

7.3 Models with multiple top quarks and W-bosons from decays of bottom squarks

In this Section we consider possible SUSY signals with pairs of bottom squarks decaying as
b̃1 → tχ̃−

1 followed by χ̃−
1 → W−χ̃0

1, see Fig. 6.

Model B1 is a model of sbottom pair production, followed by one of the most likely decay
modes of the sbottom; model B2 would be the favorite gluino mode if the sbottom was the
lightest squark.

The exclusion from our 7 TeV search of Ref. [2] is shown in Fig. 7. The equivalent results from
this analysis at 8 TeV are shown in Fig. 8. The limits on the gluino and sbottom masses are



DIRECT SUSY SEARCHES
So far, no evidence. “Vanilla” gluinos ruled out up to 
around 1 TeV, whether or not they decay through third 
generation (progress over the last year). Ways out: 

- “Natural”: gluinos not too far above 1 TeV, third gen. lighter 
than first two. Where are the stops?
- Compressed spectrum leads to less visible energy 
(LeCompte & Martin, 1111.6897)
- “Stealth”: degenerate SUSY multiplets lead to less missing 
energy (Fan, Reece, Ruderman, 1105.5135 & 1201.4875)
- R-parity violation: lightest states decay (hep-ph/0406039, 
recently Csaki et al.1111.1239, Brust et al.1206.2353, Ruderman 
et al. 1207.5787)
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These two don’t play 
well with traditional 
SUSY dark matter



HIGGS DISCOVERY
The Higgs is real, and its mass is about 125 GeV.
This is ambiguous news for SUSY partisans....



HIGGS PROPERTIES
Data summarized in Giardino / Kannike / Raidal / Strumia, 
1207.1347. 

Photons are high, taus are low, WW/ZZ just about right. 
Error bars are big. But more data is coming in quickly.
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Figure 1: Left: assuming mh = 125.5GeV, we show the measured Higgs boson rates at ATLAS,

CMS, CDF, D0 and their average (horizontal gray band at ±1σ). Here 0 (red line) corresponds

to no Higgs boson, 1 (green line) to the SM Higgs boson. Right: The Higgs boson rate favored

at 1σ (dark blue) and 2σ (light blue) in a global SM fit as function of the Higgs boson mass.

2 Reconstructing the Higgs boson properties

In the left panel of figure 1 we summarize all data points [6, 7, 8, 9, 10, 11, 12, 13, 14, 15] together

with their 1σ error-bars. The grey band shows the ±1σ range for the weighted average of all

rates:
Measured Higgs rate

SM prediction
= 1.10± 0.15 (1)

It lies along the SM prediction of 1 (green horizontal line) and is 7σ away from 0 (red horizontal

line). Thus the combination of all data favours the existence of Higgs boson with much higher

significance than any of the experiments separately.

2.1 Higgs boson mass

In the right panel of Fig. 1 we show our approximated combination of all Higgs boson data,

finding that the global best fit for the Higgs boson mass is

mh =






125.2± 0.65 GeV CMS

126.2± 0.67 GeV ATLAS

125.5± 0.54 GeV combined

. (2)

The Higgs boson mass values preferred by the two experiments are compatible, and the uncer-

tainty is so small that in the subsequent fits we can fix mh to its combined best-fit value.

The analysis proceeds along the lines of our previous work [16] (for similar older fits see [17]),

with the following modifications: 1) whenever possible we use the central values and the uncer-

tainties on Higgs boson rates as reported by the experiments, rather than inferring them from

3



HIGGS DISCOVERY

It’s a weakly coupled Higgs boson and approximately 
Standard-Model like. Nightmare scenario?

Anything resembling traditional technicolor is ruled 
out. But still a little room for a pseudo-Goldstone 
composite.

Only SUSY really predicts Higgs mass near Z mass.

But...



MSSM HIGGS MASS

• Just as in the Standard Model, Higgs mass is related to quartic 
coupling.

• Supersymmetry: gauge interactions always come with quartic 
scalar interactions (D-term potential)

• Implication: Higgs quartic related to gauge couplings, which 
also determine W, Z masses: tree-level bound
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Higgs mass maximized at large 
tan beta.



125 GEV HIGGS AND SUSY

Very interesting! Light enough that SUSY still 
seems sane, but heavy enough that many models don’t.

Many options to fit it, but most feel a little contrived.

MSSM:

Implications of a 125 GeV Higgs for the MSSM and Low-Scale SUSY Breaking

Patrick Draper1, Patrick Meade2, Matthew Reece3, and David Shih4
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CNYITP, Stony Brook University, Stony Brook NY 11794
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Department of Physics, Harvard University, Cambridge, MA 02138
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(Dated: January 24, 2012)

Recently, the ATLAS and CMS collaborations have announced exciting hints for a Standard

Model-like Higgs boson at a mass of ≈ 125 GeV. In this paper, we explore the potential consequences

for the MSSM and low scale SUSY-breaking. As is well-known, a 125 GeV Higgs implies either

extremely heavy stops (� 10 TeV), or near-maximal stop mixing. We review and quantify these

statements, and investigate the implications for models of low-scale SUSY breaking such as gauge

mediation where the A-terms are small at the messenger scale. For such models, we find that either

a gaugino must be superheavy or the NLSP is long-lived. Furthermore, stops will be tachyonic

at high scales. These are very strong restrictions on the mediation of supersymmetry breaking in

the MSSM, and suggest that if the Higgs truly is at 125 GeV, viable models of gauge-mediated

supersymmetry breaking are reduced to small corners of parameter space or must incorporate new

Higgs-sector physics.

I. INTRODUCTION

Recently, intriguing hints of the Standard Model (SM)-
like Higgs boson have been reported by the LHC. The
ATLAS collaboration has presented results in the dipho-
ton [1] and ZZ

∗ → 4� [2] channels, showing a combined
∼ 3σ excess at mh ≈ 126 GeV. The CMS collaboration
has also presented results with a weaker ∼ 2σ excess in
the γγ channel at mh ≈ 123 GeV [3] and two events in
the ZZ

∗ channel near the same mass [4]. It is too early
to say whether these preliminary results will grow in sig-
nificance to become a Higgs discovery, but it is not too
early to consider some of the consequences if they do.

The potential discovery of a light Higgs renews the
urgency of the gauge hierarchy problem. Supersymme-
try remains the best-motivated solution to the hierar-
chy problem. Although it has not yet been found at
the LHC, considerable discovery potential still remains
in the parameter space relevant for naturalness [5]. How-
ever, a 125 GeV Higgs places stringent constraints on
supersymmetry, especially in the context of the minimal
supersymmetric standard model (MSSM). In this paper
we will examine these constraints in detail and use this
to study the implications for low-scale SUSY breaking.

In the MSSM, for values of the CP -odd Higgs mass
mA � 200 GeV, there exists a light CP -even Higgs
state in the spectrum with SM-like couplings to the elec-
troweak gauge bosons. The SM-Higgs mass and proper-
ties are dominantly controlled by just a few weak-scale
MSSM parameters: at tree level, mA and tanβ, joined at
higher order by the stop masses mt̃1,2 and the stop mix-
ing parameter Xt ≡ At−µ cotβ. At tree-level, the Higgs
mass is bounded above by mZ cos 2β. One-loop correc-
tions from stops are responsible for lifting this bound
to ∼ 130 GeV [6–10, 12], for a general review, see [13].
Other parameters of the MSSM contribute radiative cor-
rections to the Higgs mass, but in general are highly sub-
dominant to the stop sector. Even with large loop effects,

it is noteworthy that 125 GeV is a relatively large Higgs
mass for the MSSM—this fact allows us to constrain the
stop masses and mixing.
In this paper, we will focus on stop masses mt̃ � 5 TeV

which includes the collider relevant region. (We briefly
consider heavier stops in the appendix.) Here fixed-order
Higgs spectrum calculators such as FeynHiggs [14–17],
which implements a broad set of one and two-loop cor-
rections to the physical Higgs mass, should be fairly ac-
curate. Imposing an upper bound on the stop masses
implies stringent bounds on tanβ and At, and in partic-
ular requires large mixings among the stops.
FormA � 500 GeV, the SM-like Higgs has an enhanced

coupling to the down-type fermions, leading to an in-
crease in the h → bb̄ partial width and suppressing the
branching fractions into the main low-mass LHC search
modes, h → γγ,WW [18–20]. Since the LHC sees a rate
consistent with SM expectations (albeit with a sizeable
error bar), in this work we take mA = 1 TeV, where all
the Higgs couplings are SM-like. This limit also avoids
constraints from direct searches for H/A → ττ [21–23].
For tanβ we will set a benchmark value of 30 and con-
sider a range of values in some cases.

II. IMPLICATIONS FOR WEAK-SCALE MSSM

PARAMETERS

For mt̃ � 5 TeV, a Higgs mass of mh ≈ 125 GeV
places strong constraints on tanβ and the stop parame-
ters. Although we will use FeynHiggs for all the plots in
this section, it is useful to keep in mind the approximate
one-loop formula for the Higgs mass,
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Consider the diagrams in Fig. 1. We’ve already observed that the one at left is problematic: it’s a
renormalization of an external line, so we don’t want to include it when we compute a loop amplitude. In
shamplitude calculations, it shows up as unpleasant 1

s12...(n−1)
→ ∞ factors in the amplitudes we’re trying

to build the shamplitude out of, which we are currently removing by hand.
The other kind of bubble diagram with one gluon connected at one end is shown on the right in Fig. 1.

It has a two-particle vertex at the other end. As a result, it has the structure:

�
d4�

(2π)4
�1µ (2�µ + kµ1 ) J(k2, . . . kj) · J(kj+1, . . . kn)

(�2 −m2)((�+ k1)2 −m2)
. (1)

Notice that this always contributes 0 to the loop integral: �1 · k1 = 0, and the bubble integral, linear in �µ,
can only be proportional to kµ1 , because all dependence on the other momenta factors out of the integrand.

So, we can in fact drop every diagram with only one gluon connected on one side of a bubble. It’s tempting
to try to inductively turn this into a procedure for generating shamplitudes only from other shamplitudes,
not from amplitudes, but the argument doesn’t work. It would be nice to do something more systematic
than dropping terms by hand. Is there a nice procedure that makes use of this fact?

At least for the 4-point shamplitude, it means computing it directly from Feynman diagrams only involves
summing up nine diagrams (Fig. 2). We can eliminate four of these with a convenient gauge choice.

Four-point loops from Feynman diagrams

If we want to compute the + + ++ amplitude, we can make �i · �j = 0 simply by taking �i =
µλ̃i

�µ i� for all i.

In the + + +− case, we can make �i · �j = 0 by taking �i =
λ4λ̃i
�4 i� for i = 1, 2, 3 and �4 = λ4λ̃1

[4 1] . Thus, we can

discard all Feynman diagrams with 4-point (2-scalar 2-gluon) vertices. The remaining diagrams are boxes,
triangles, and the bubble with two particles on each side attached at 3-gluon vertices.
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Recently, the ATLAS and CMS collaborations have announced exciting hints for a Standard

Model-like Higgs boson at a mass of ≈ 125 GeV. In this paper, we explore the potential consequences

for the MSSM and low scale SUSY-breaking. As is well-known, a 125 GeV Higgs implies either

extremely heavy stops (� 10 TeV), or near-maximal stop mixing. We review and quantify these

statements, and investigate the implications for models of low-scale SUSY breaking such as gauge

mediation where the A-terms are small at the messenger scale. For such models, we find that either

a gaugino must be superheavy or the NLSP is long-lived. Furthermore, stops will be tachyonic

at high scales. These are very strong restrictions on the mediation of supersymmetry breaking in

the MSSM, and suggest that if the Higgs truly is at 125 GeV, viable models of gauge-mediated

supersymmetry breaking are reduced to small corners of parameter space or must incorporate new

Higgs-sector physics.

I. INTRODUCTION

Recently, intriguing hints of the Standard Model (SM)-
like Higgs boson have been reported by the LHC. The
ATLAS collaboration has presented results in the dipho-
ton [1] and ZZ

∗ → 4� [2] channels, showing a combined
∼ 3σ excess at mh ≈ 126 GeV. The CMS collaboration
has also presented results with a weaker ∼ 2σ excess in
the γγ channel at mh ≈ 123 GeV [3] and two events in
the ZZ

∗ channel near the same mass [4]. It is too early
to say whether these preliminary results will grow in sig-
nificance to become a Higgs discovery, but it is not too
early to consider some of the consequences if they do.

The potential discovery of a light Higgs renews the
urgency of the gauge hierarchy problem. Supersymme-
try remains the best-motivated solution to the hierar-
chy problem. Although it has not yet been found at
the LHC, considerable discovery potential still remains
in the parameter space relevant for naturalness [5]. How-
ever, a 125 GeV Higgs places stringent constraints on
supersymmetry, especially in the context of the minimal
supersymmetric standard model (MSSM). In this paper
we will examine these constraints in detail and use this
to study the implications for low-scale SUSY breaking.

In the MSSM, for values of the CP -odd Higgs mass
mA � 200 GeV, there exists a light CP -even Higgs
state in the spectrum with SM-like couplings to the elec-
troweak gauge bosons. The SM-Higgs mass and proper-
ties are dominantly controlled by just a few weak-scale
MSSM parameters: at tree level, mA and tanβ, joined at
higher order by the stop masses mt̃1,2 and the stop mix-
ing parameter Xt ≡ At−µ cotβ. At tree-level, the Higgs
mass is bounded above by mZ cos 2β. One-loop correc-
tions from stops are responsible for lifting this bound
to ∼ 130 GeV [6–10, 12], for a general review, see [13].
Other parameters of the MSSM contribute radiative cor-
rections to the Higgs mass, but in general are highly sub-
dominant to the stop sector. Even with large loop effects,

it is noteworthy that 125 GeV is a relatively large Higgs
mass for the MSSM—this fact allows us to constrain the
stop masses and mixing.
In this paper, we will focus on stop masses mt̃ � 5 TeV

which includes the collider relevant region. (We briefly
consider heavier stops in the appendix.) Here fixed-order
Higgs spectrum calculators such as FeynHiggs [14–17],
which implements a broad set of one and two-loop cor-
rections to the physical Higgs mass, should be fairly ac-
curate. Imposing an upper bound on the stop masses
implies stringent bounds on tanβ and At, and in partic-
ular requires large mixings among the stops.
FormA � 500 GeV, the SM-like Higgs has an enhanced

coupling to the down-type fermions, leading to an in-
crease in the h → bb̄ partial width and suppressing the
branching fractions into the main low-mass LHC search
modes, h → γγ,WW [18–20]. Since the LHC sees a rate
consistent with SM expectations (albeit with a sizeable
error bar), in this work we take mA = 1 TeV, where all
the Higgs couplings are SM-like. This limit also avoids
constraints from direct searches for H/A → ττ [21–23].
For tanβ we will set a benchmark value of 30 and con-
sider a range of values in some cases.

II. IMPLICATIONS FOR WEAK-SCALE MSSM

PARAMETERS

For mt̃ � 5 TeV, a Higgs mass of mh ≈ 125 GeV
places strong constraints on tanβ and the stop parame-
ters. Although we will use FeynHiggs for all the plots in
this section, it is useful to keep in mind the approximate
one-loop formula for the Higgs mass,
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Consider the diagrams in Fig. 1. We’ve already observed that the one at left is problematic: it’s a
renormalization of an external line, so we don’t want to include it when we compute a loop amplitude. In
shamplitude calculations, it shows up as unpleasant 1

s12...(n−1)
→ ∞ factors in the amplitudes we’re trying

to build the shamplitude out of, which we are currently removing by hand.
The other kind of bubble diagram with one gluon connected at one end is shown on the right in Fig. 1.

It has a two-particle vertex at the other end. As a result, it has the structure:

�
d4�

(2π)4
�1µ (2�µ + kµ1 ) J(k2, . . . kj) · J(kj+1, . . . kn)

(�2 −m2)((�+ k1)2 −m2)
. (1)

Notice that this always contributes 0 to the loop integral: �1 · k1 = 0, and the bubble integral, linear in �µ,
can only be proportional to kµ1 , because all dependence on the other momenta factors out of the integrand.

So, we can in fact drop every diagram with only one gluon connected on one side of a bubble. It’s tempting
to try to inductively turn this into a procedure for generating shamplitudes only from other shamplitudes,
not from amplitudes, but the argument doesn’t work. It would be nice to do something more systematic
than dropping terms by hand. Is there a nice procedure that makes use of this fact?

At least for the 4-point shamplitude, it means computing it directly from Feynman diagrams only involves
summing up nine diagrams (Fig. 2). We can eliminate four of these with a convenient gauge choice.

Four-point loops from Feynman diagrams

If we want to compute the + + ++ amplitude, we can make �i · �j = 0 simply by taking �i =
µλ̃i

�µ i� for all i.

In the + + +− case, we can make �i · �j = 0 by taking �i =
λ4λ̃i
�4 i� for i = 1, 2, 3 and �4 = λ4λ̃1

[4 1] . Thus, we can

discard all Feynman diagrams with 4-point (2-scalar 2-gluon) vertices. The remaining diagrams are boxes,
triangles, and the bubble with two particles on each side attached at 3-gluon vertices.
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Recently, the ATLAS and CMS collaborations have announced exciting hints for a Standard

Model-like Higgs boson at a mass of ≈ 125 GeV. In this paper, we explore the potential consequences

for the MSSM and low scale SUSY-breaking. As is well-known, a 125 GeV Higgs implies either

extremely heavy stops (� 10 TeV), or near-maximal stop mixing. We review and quantify these

statements, and investigate the implications for models of low-scale SUSY breaking such as gauge

mediation where the A-terms are small at the messenger scale. For such models, we find that either

a gaugino must be superheavy or the NLSP is long-lived. Furthermore, stops will be tachyonic

at high scales. These are very strong restrictions on the mediation of supersymmetry breaking in

the MSSM, and suggest that if the Higgs truly is at 125 GeV, viable models of gauge-mediated

supersymmetry breaking are reduced to small corners of parameter space or must incorporate new

Higgs-sector physics.

I. INTRODUCTION

Recently, intriguing hints of the Standard Model (SM)-
like Higgs boson have been reported by the LHC. The
ATLAS collaboration has presented results in the dipho-
ton [1] and ZZ

∗ → 4� [2] channels, showing a combined
∼ 3σ excess at mh ≈ 126 GeV. The CMS collaboration
has also presented results with a weaker ∼ 2σ excess in
the γγ channel at mh ≈ 123 GeV [3] and two events in
the ZZ

∗ channel near the same mass [4]. It is too early
to say whether these preliminary results will grow in sig-
nificance to become a Higgs discovery, but it is not too
early to consider some of the consequences if they do.

The potential discovery of a light Higgs renews the
urgency of the gauge hierarchy problem. Supersymme-
try remains the best-motivated solution to the hierar-
chy problem. Although it has not yet been found at
the LHC, considerable discovery potential still remains
in the parameter space relevant for naturalness [5]. How-
ever, a 125 GeV Higgs places stringent constraints on
supersymmetry, especially in the context of the minimal
supersymmetric standard model (MSSM). In this paper
we will examine these constraints in detail and use this
to study the implications for low-scale SUSY breaking.

In the MSSM, for values of the CP -odd Higgs mass
mA � 200 GeV, there exists a light CP -even Higgs
state in the spectrum with SM-like couplings to the elec-
troweak gauge bosons. The SM-Higgs mass and proper-
ties are dominantly controlled by just a few weak-scale
MSSM parameters: at tree level, mA and tanβ, joined at
higher order by the stop masses mt̃1,2 and the stop mix-
ing parameter Xt ≡ At−µ cotβ. At tree-level, the Higgs
mass is bounded above by mZ cos 2β. One-loop correc-
tions from stops are responsible for lifting this bound
to ∼ 130 GeV [6–10, 12], for a general review, see [13].
Other parameters of the MSSM contribute radiative cor-
rections to the Higgs mass, but in general are highly sub-
dominant to the stop sector. Even with large loop effects,

it is noteworthy that 125 GeV is a relatively large Higgs
mass for the MSSM—this fact allows us to constrain the
stop masses and mixing.
In this paper, we will focus on stop masses mt̃ � 5 TeV

which includes the collider relevant region. (We briefly
consider heavier stops in the appendix.) Here fixed-order
Higgs spectrum calculators such as FeynHiggs [14–17],
which implements a broad set of one and two-loop cor-
rections to the physical Higgs mass, should be fairly ac-
curate. Imposing an upper bound on the stop masses
implies stringent bounds on tanβ and At, and in partic-
ular requires large mixings among the stops.
FormA � 500 GeV, the SM-like Higgs has an enhanced

coupling to the down-type fermions, leading to an in-
crease in the h → bb̄ partial width and suppressing the
branching fractions into the main low-mass LHC search
modes, h → γγ,WW [18–20]. Since the LHC sees a rate
consistent with SM expectations (albeit with a sizeable
error bar), in this work we take mA = 1 TeV, where all
the Higgs couplings are SM-like. This limit also avoids
constraints from direct searches for H/A → ττ [21–23].
For tanβ we will set a benchmark value of 30 and con-
sider a range of values in some cases.

II. IMPLICATIONS FOR WEAK-SCALE MSSM

PARAMETERS

For mt̃ � 5 TeV, a Higgs mass of mh ≈ 125 GeV
places strong constraints on tanβ and the stop parame-
ters. Although we will use FeynHiggs for all the plots in
this section, it is useful to keep in mind the approximate
one-loop formula for the Higgs mass,
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Consider the diagrams in Fig. 1. We’ve already observed that the one at left is problematic: it’s a
renormalization of an external line, so we don’t want to include it when we compute a loop amplitude. In
shamplitude calculations, it shows up as unpleasant 1

s12...(n−1)
→ ∞ factors in the amplitudes we’re trying

to build the shamplitude out of, which we are currently removing by hand.
The other kind of bubble diagram with one gluon connected at one end is shown on the right in Fig. 1.

It has a two-particle vertex at the other end. As a result, it has the structure:

�
d4�

(2π)4
�1µ (2�µ + kµ1 ) J(k2, . . . kj) · J(kj+1, . . . kn)

(�2 −m2)((�+ k1)2 −m2)
. (1)

Notice that this always contributes 0 to the loop integral: �1 · k1 = 0, and the bubble integral, linear in �µ,
can only be proportional to kµ1 , because all dependence on the other momenta factors out of the integrand.

So, we can in fact drop every diagram with only one gluon connected on one side of a bubble. It’s tempting
to try to inductively turn this into a procedure for generating shamplitudes only from other shamplitudes,
not from amplitudes, but the argument doesn’t work. It would be nice to do something more systematic
than dropping terms by hand. Is there a nice procedure that makes use of this fact?

At least for the 4-point shamplitude, it means computing it directly from Feynman diagrams only involves
summing up nine diagrams (Fig. 2). We can eliminate four of these with a convenient gauge choice.

Four-point loops from Feynman diagrams

If we want to compute the + + ++ amplitude, we can make �i · �j = 0 simply by taking �i =
µλ̃i

�µ i� for all i.

In the + + +− case, we can make �i · �j = 0 by taking �i =
λ4λ̃i
�4 i� for i = 1, 2, 3 and �4 = λ4λ̃1

[4 1] . Thus, we can

discard all Feynman diagrams with 4-point (2-scalar 2-gluon) vertices. The remaining diagrams are boxes,
triangles, and the bubble with two particles on each side attached at 3-gluon vertices.

1

Haber, Hempfling ’91

more: Haber, Hempfling, Hoang, Ellis, Ridolfi, Zwirner, Casas, Espinosa, Quiros, Riotto, 
Carena, Wagner, Degrassi, Heinemeyer, Hollik, Slavich, Weiglein

Logarithmic growth with stop mass



125 GEV HIGGS AND SUSY

Very interesting! Light enough that SUSY still 
seems sane, but heavy enough that many models don’t.

Many options to fit it, but most feel a little contrived.

MSSM:

Implications of a 125 GeV Higgs for the MSSM and Low-Scale SUSY Breaking

Patrick Draper1, Patrick Meade2, Matthew Reece3, and David Shih4
1
SCIPP, University of California, Santa Cruz, CA 95064

2
CNYITP, Stony Brook University, Stony Brook NY 11794

3
Department of Physics, Harvard University, Cambridge, MA 02138

4
NHETC, Rutgers University, Piscataway, NJ 08854

(Dated: January 24, 2012)

Recently, the ATLAS and CMS collaborations have announced exciting hints for a Standard

Model-like Higgs boson at a mass of ≈ 125 GeV. In this paper, we explore the potential consequences

for the MSSM and low scale SUSY-breaking. As is well-known, a 125 GeV Higgs implies either

extremely heavy stops (� 10 TeV), or near-maximal stop mixing. We review and quantify these

statements, and investigate the implications for models of low-scale SUSY breaking such as gauge

mediation where the A-terms are small at the messenger scale. For such models, we find that either

a gaugino must be superheavy or the NLSP is long-lived. Furthermore, stops will be tachyonic

at high scales. These are very strong restrictions on the mediation of supersymmetry breaking in

the MSSM, and suggest that if the Higgs truly is at 125 GeV, viable models of gauge-mediated

supersymmetry breaking are reduced to small corners of parameter space or must incorporate new

Higgs-sector physics.

I. INTRODUCTION

Recently, intriguing hints of the Standard Model (SM)-
like Higgs boson have been reported by the LHC. The
ATLAS collaboration has presented results in the dipho-
ton [1] and ZZ

∗ → 4� [2] channels, showing a combined
∼ 3σ excess at mh ≈ 126 GeV. The CMS collaboration
has also presented results with a weaker ∼ 2σ excess in
the γγ channel at mh ≈ 123 GeV [3] and two events in
the ZZ

∗ channel near the same mass [4]. It is too early
to say whether these preliminary results will grow in sig-
nificance to become a Higgs discovery, but it is not too
early to consider some of the consequences if they do.

The potential discovery of a light Higgs renews the
urgency of the gauge hierarchy problem. Supersymme-
try remains the best-motivated solution to the hierar-
chy problem. Although it has not yet been found at
the LHC, considerable discovery potential still remains
in the parameter space relevant for naturalness [5]. How-
ever, a 125 GeV Higgs places stringent constraints on
supersymmetry, especially in the context of the minimal
supersymmetric standard model (MSSM). In this paper
we will examine these constraints in detail and use this
to study the implications for low-scale SUSY breaking.

In the MSSM, for values of the CP -odd Higgs mass
mA � 200 GeV, there exists a light CP -even Higgs
state in the spectrum with SM-like couplings to the elec-
troweak gauge bosons. The SM-Higgs mass and proper-
ties are dominantly controlled by just a few weak-scale
MSSM parameters: at tree level, mA and tanβ, joined at
higher order by the stop masses mt̃1,2 and the stop mix-
ing parameter Xt ≡ At−µ cotβ. At tree-level, the Higgs
mass is bounded above by mZ cos 2β. One-loop correc-
tions from stops are responsible for lifting this bound
to ∼ 130 GeV [6–10, 12], for a general review, see [13].
Other parameters of the MSSM contribute radiative cor-
rections to the Higgs mass, but in general are highly sub-
dominant to the stop sector. Even with large loop effects,

it is noteworthy that 125 GeV is a relatively large Higgs
mass for the MSSM—this fact allows us to constrain the
stop masses and mixing.
In this paper, we will focus on stop masses mt̃ � 5 TeV

which includes the collider relevant region. (We briefly
consider heavier stops in the appendix.) Here fixed-order
Higgs spectrum calculators such as FeynHiggs [14–17],
which implements a broad set of one and two-loop cor-
rections to the physical Higgs mass, should be fairly ac-
curate. Imposing an upper bound on the stop masses
implies stringent bounds on tanβ and At, and in partic-
ular requires large mixings among the stops.
FormA � 500 GeV, the SM-like Higgs has an enhanced

coupling to the down-type fermions, leading to an in-
crease in the h → bb̄ partial width and suppressing the
branching fractions into the main low-mass LHC search
modes, h → γγ,WW [18–20]. Since the LHC sees a rate
consistent with SM expectations (albeit with a sizeable
error bar), in this work we take mA = 1 TeV, where all
the Higgs couplings are SM-like. This limit also avoids
constraints from direct searches for H/A → ττ [21–23].
For tanβ we will set a benchmark value of 30 and con-
sider a range of values in some cases.

II. IMPLICATIONS FOR WEAK-SCALE MSSM

PARAMETERS

For mt̃ � 5 TeV, a Higgs mass of mh ≈ 125 GeV
places strong constraints on tanβ and the stop parame-
ters. Although we will use FeynHiggs for all the plots in
this section, it is useful to keep in mind the approximate
one-loop formula for the Higgs mass,
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Consider the diagrams in Fig. 1. We’ve already observed that the one at left is problematic: it’s a
renormalization of an external line, so we don’t want to include it when we compute a loop amplitude. In
shamplitude calculations, it shows up as unpleasant 1

s12...(n−1)
→ ∞ factors in the amplitudes we’re trying

to build the shamplitude out of, which we are currently removing by hand.
The other kind of bubble diagram with one gluon connected at one end is shown on the right in Fig. 1.

It has a two-particle vertex at the other end. As a result, it has the structure:

�
d4�

(2π)4
�1µ (2�µ + kµ1 ) J(k2, . . . kj) · J(kj+1, . . . kn)

(�2 −m2)((�+ k1)2 −m2)
. (1)

Notice that this always contributes 0 to the loop integral: �1 · k1 = 0, and the bubble integral, linear in �µ,
can only be proportional to kµ1 , because all dependence on the other momenta factors out of the integrand.

So, we can in fact drop every diagram with only one gluon connected on one side of a bubble. It’s tempting
to try to inductively turn this into a procedure for generating shamplitudes only from other shamplitudes,
not from amplitudes, but the argument doesn’t work. It would be nice to do something more systematic
than dropping terms by hand. Is there a nice procedure that makes use of this fact?

At least for the 4-point shamplitude, it means computing it directly from Feynman diagrams only involves
summing up nine diagrams (Fig. 2). We can eliminate four of these with a convenient gauge choice.

Four-point loops from Feynman diagrams

If we want to compute the + + ++ amplitude, we can make �i · �j = 0 simply by taking �i =
µλ̃i

�µ i� for all i.

In the + + +− case, we can make �i · �j = 0 by taking �i =
λ4λ̃i
�4 i� for i = 1, 2, 3 and �4 = λ4λ̃1

[4 1] . Thus, we can

discard all Feynman diagrams with 4-point (2-scalar 2-gluon) vertices. The remaining diagrams are boxes,
triangles, and the bubble with two particles on each side attached at 3-gluon vertices.
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FIG. 5. Messenger scale required to produce sufficiently large |At| for mh = 123 GeV (left) and mh = 125 GeV

(right) through renormalization group evolution.

At = 0 at the messenger scale. Clearly this is not com-
pletely set in stone, and it would be interesting to look for
models of GMSB (or more generally flavor-blind models)
with large At at the messenger scale. This may be pos-
sible in more extended models, for instance in [37] where
the Higgses mix with doublet messengers.
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Appendix A: Comments on “heavy SUSY” scenarios

Although we have focused on mixed stops which can
be light enough to be produced at the LHC, let us briefly
consider the case of stops without mixing. For small
MS , we can compute the Higgs mass with FeynHiggs.
For larger MS , we use a one-loop RGE to evolve the
SUSY quartic down to the electroweak scale, computing
the physical Higgs mass by including self-energy correc-
tions [38, 39]. In Figure 6, we plot the resulting value of
mh as a function of MS , in the case of zero mixing. We
plot the FeynHiggs output only up to 3 TeV, at which
point its uncertainties become large and the RGE is more
trustworthy. One can see from the plot that accommo-

dating a 125 GeV Higgs in the MSSM with small A-terms
requires scalar masses in the range of 5 to 10 TeV.
A variation on this “heavy stop” scenario is Split Su-

persymmetry [40, 41], in which gauginos and higgsinos
have masses well below MS and influence the running of
λ. In this case, the running below MS is modified by the
light superpartners, and the preferred scalar mass scale
for a 125 GeV Higgs can be even larger [42–44].
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FIG. 6. Higgs mass as a function of MS , with Xt = 0. The

green band is the output of FeynHiggs together with its as-

sociated uncertainty. The blue line represents 1-loop renor-

malization group evolution in the Standard Model matched

to the MSSM at MS . The blue bands give estimates of errors

from varying the top mass between 172 and 174 GeV (darker

band) and the renormalization scale between mt/2 and 2mt

(lighter band).
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as it captures many of the qualitative features that we

will see. We have characterized the scale of superpart-

ner masses with MS ≡
�
mt̃1mt̃2

�1/2
. First, we see that

decreasing tanβ always decreases the Higgs mass, inde-

pendent of all the other parameters (keeping in mind that

tanβ � 1.5 for perturbativity). So we expect to find a

lower bound on tanβ coming from the Higgs mass. Sec-

ond, we see that the Higgs mass depends on Xt/MS as

a quartic polynomial, and in general it has two peaks at

Xt/MS ≈ ±
√
6, the “maximal mixing scenario” [10]. So

we expect that mh = 125 GeV intersects this quartic in

up to four places, leading to up to four preferred values

for Xt/MS . Finally, we see that for fixed Xt/MS , the

Higgs mass only increases logarithmically with MS itself.

So we expect a mild lower bound on MS from mh = 125

GeV.

Now let’s demonstrate these general points with de-

tailed calculations using FeynHiggs. Shown in fig. 1 are

contours of constant Higgs mass in the tanβ, Xt/MS

plane, for mQ = mU = 2 TeV (where mQ and mU

are the soft masses of the third-generation left-handed

quark and right-handed up-type quark scalar fields). The

shaded band corresponds to mh = 123 − 127 GeV, and

the dashed lines indicate the same range of Higgs masses

but with mt = 172 − 174 GeV. (The central value in all

our plots will always be mh = 125 GeV at mt = 173.2
GeV.) From all this, we conclude that to be able to get

mh ≈ 125 GeV, we must have

tanβ � 3.5 (2)

So this is an absolute lower bound on tanβ just from the

Higgs mass measurement. We also find that the Higgs

mass basically ceases to depend on tanβ for tanβ beyond

∼ 20. So for the rest of the paper we will take tanβ = 30

for simplicity.

Fixing tanβ, the Higgs mass is then a function of Xt

and MS . Shown in fig. 2 are contours of constant mh vs

MS and Xt. We see that for large MS , we want

Xt

MS
≈ −3, −1.7, 1.5, or 3.5 (3)

We also see that the smallest the A-terms and the SUSY-

scale can absolutely be are

|Xt| � 1000 GeV, MS � 500 GeV. (4)

It is also interesting to examine the limits in the plane

of physical stop masses. Shown in fig. 3 are plots of the

contours of constant Xt in the mt̃2 vs. mt̃1 plane. Here

the values of Xt < 0 and Xt > 0 were chosen to satisfy

mh = 125 GeV, and the solution with smaller absolute

value was chosen. In the dark gray shaded region, no

solution to mh = 125 GeV was found. Here we see that

the t̃1 can be as light as 200 GeV, provided we take t̃2 to

be heavy enough. We also see that the heavy stop has to

be much heavier in general in the Xt < 0 case.
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FIG. 1. Contour plot of mh in the tanβ vs. Xt/MS plane.
The stops were set at mQ = mU = 2 TeV, and the result is
only weakly dependent on the stop mass up to ∼ 5 TeV. The
solid curve is mh = 125 GeV with mt = 173.2 GeV. The band
around the curve corresponds to mh =123-127 GeV. Finally,
the dashed lines correspond to varying mt from 172-174.
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FIG. 2. Contours of constant mh in the MS vs. Xt plane,
with tanβ = 30 and mQ = mU . The solid/dashed lines and
gray bands are as in fig. 1.

III. IMPLICATIONS FOR THE SUSY
BREAKING SCALE

Having understood what mh ≈ 125 GeV implies for

the weak-scale MSSM parameters, we now turn to the

implications for the underlying model of SUSY-breaking

and mediation. In RG running down from a high scale,

for positive gluino mass M3, the A-term At decreases.

The gluino mass also drives squark mass-squareds larger

P. Draper, P. Meade, MR, D. Shih ’11; similar work by many others

In the MSSM, a 125 GeV Higgs requires large quantum 
corrections, with multi-TeV SUSY-breaking parameters, 
reintroducing (part of) the hierarchy.

lifting the 
Higgs mass 
needs ~ 5 
to 10 TeV 
scalar 
masses

or few TeV trilinear 
Higgs-stop-stop coupling
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MSSM DARK MATTER
Neutralinos: superpartners of photon, Z, and Higgs.
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Figure 4: Some annihilation modes
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Wino and higgsino: in SU(2) 
multiplets; can annihilate a lot. 

Thermal relic abundance is 
underpopulated unless they’re 
heavy (about 1 TeV for higgsinos or 
2.7 TeV for winos), e.g.:

�
σv(χχ → W+W−)

�
≈ 3× 10−24 cm

3

s
for mχ ≈ 140 GeV



MSSM DARK MATTER

Bino: overpopulates, unless slepton 
is very light or degenerate within 
5% for coannihilation.

Viable MSSM dark matter :
- coannihilation to boost relic abundance of a 
mostly-bino state
- delicate mixing of wino/higgsino and bino to get 
thermal abundance (“well-tempered”)
- non-thermal relic abundance
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WELL-TEMPERED NEUTRALINO
The right mixture of bino/higgsino or bino/wino can have 
a thermal relic abundance. Arkani-Hamed/Delgado/
Giudice hep-ph/0601041: “Well-tempered neutralino.”
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Figure 8: Model independent “well-tempered” neutralino scenario. The 3σ range for the cos-
mological DM abundance is reproduced within the green strip. The gray region is excluded by
Xenon100 [16].

for a heavier MDM ≈ 2.7TeV taking into account electroweak Sommerfeld effects [56]).

Contrary to the previous case, having no coupling to the Z it is allowed by direct searches.

• The pure bino, instead, has no couplings and no co-annihilations, such that its cosmolog-

ical abundance would be too high.

Given that the bino has opposite problems with respect to the higgsino or the wino, it is

possible to find a good DM candidate by appropriately mixing them [20]. A mixed bino/wino

still has no couplings to the Z, such that it is not interesting for direct detection; furthermore it

requires M1 ≈ M2 at the weak scale and is not compatible with unification of gaugino masses,

M1 ≈ M2 ≈ M3 at the GUT scale.

We thereby focus on a mixed bino/higgsino. In the limit where we can ignore all other

heavier sparticles, its phenomenology is fully described by 3 parameters: the bino mass term

M1, the higgsino mass term µ (we assume them to be positive) and tan β. The observed thermal

relic DM abundance is reproduced in the green strip in Fig. 8 (left panel for tan β = 3 and right

panel for tan β = 10). The region with M1 ≈ µ ≈ MZ was allowed, but its large direct detection

cross section is now disfavored by Xenon100 (gray region). An improvement of the Xenon100
bound by a factor of few would fully exclude the whole “well-tempered” neutralino scenario,

unless the local DM density or the nuclear matrix element f of eq. (12) are significantly lower

than what is assumed in our computation.

The minor tilt at MDM ≈ mt is due to the top quark threshold. At lower masses, the cosmo-

logically allowed region of Fig. 8 is affected by the Z and Higgs resonances (2MDM = MZ or mh

respectively, indicated as red curves). At larger masses, the “well-tempered” neutralino region

terminates at µ ≈ 1TeV, where the (almost) pure higgsino becomes a good DM candidate.
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XENON100 is significantly 
eating into the parameter 
space: Farina et al., 1104.3572.

See also: Perelstein & Shakya, 
1107.5048; talk by B. Shakya 
tomorrow.



NON-THERMAL DM
Supergravity theories are generically expected to have a 
moduli problem. New scalar fields with gravitational-
strength couplings.

parameters, dissociated from the SUSY breaking order parameter f that sets the gravitino

mass. From Eq. 2.11, one could see that the tiny c.c. is achieved by a fine tuning to the order

O(fMP /Λ3) among the large Planck-scale parameters in the moduli sector. The modulus

potential is shallow but steep as shown in the right panel of Figure 3. We stress that the

tuning that makes the modulus heavy is different from the tuning that cancels the c.c.; even

fixing the depth of the supersymmetric AdS minimum that we uplift, the typical potential

will look like the left-hand plot in Fig. 3, and the modulus mass will be of order m3/2.
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�1.5�10�14

�1.�10�14

�5.�10�15

5.�10�15
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Figure 3: Two example potentials V (T ), untuned at left and tuned at right, arising from the super-
potential 2.6. As in Fig. 2, there is a minimum at t∗ = 56.8 with depth V (t∗) = −1.4× 10−14 in each
case. In the plot at right, the modulus at this minimum is tuned to be very heavy.

Our argument that moduli masses will be of order the gravitino mass unless there is a

tuning such that the individual terms in W , at the minimum, nearly cancel is very similar to

the one already given in Ref. [7]. However, they explicitly state an assumption that moduli

fields are massless in the absence of SUSY breaking. We emphasize the key point that we need

not assume that the moduli masses arise from SUSY breaking effects to make this argument.

2.3 Moduli Decays

If we tune to have a light gravitino and heavy moduli, one potential problem is an over-

abundance of gravitinos arising from moduli decays. The heavy moduli could either cascade

through SM superpartners ending in gravitinos and SM particles, e.g., T → 2g̃ → · · · →
2ψ3/2 + · · · or decay directly to a pair of gravitinos T → 2ψ3/2. The decay widths scale as

ΓT = αm3
T /(4πM

2
P ) with a model-dependent constant α. Below we will calculate the partial

widths and the branching fractions of different decay channels.

The simplest way to couple a single modulus to the MSSM is through the gauge kinetic

function,
�
d2θ TWαWα, which leads to, in components,

L = − 1

4
�

GTT †

�
T̂R

t∗
Ga

µνG
aµν +

T̂I

t∗
Ga

µνG̃
aµν − mT

t∗
(T̂λλ+ h.c.)

�
, (2.13)

where the subscripts R(I) denote the real (imaginary) component of T , and T̂ ≡
�

GTT †(T −
t∗) is the canonically normalized modulus field. For K = −3 log(T + T †), a straightforward

– 8 –

Moduli masses ~ m3/2 from effective field theory after 
canceling the c.c. (de Carlos et al. hep-ph/9308325; Fan et 
al. 1106.6044). This is one strike against gravitino dark 
matter.



MODULI TO DM?

Moduli oscillate coherently, ruining cosmology, unless they 
are heavy enough that their decays reheat the universe 
above the BBN temperature.

Suggests m3/2 ~ 30 to 100 TeV. Moduli decays 
produce neutralinos, allowing winos to have a larger 
relic abundance (Moroi & Randall, hep-ph/9906527; J. Kaplan, hep-ph/
0601262; Gelmini & Gondolo, hep-ph/0602230; Acharya, Kane, et al., many papers)

Lesson: don’t rely too much on the assumption of 
thermal relic abundance.



IN WINO VERITAS?
The non-thermal scenario makes winos a compelling 
possibility for dark matter. Their large annihilation rate 
doesn’t necessarily imply under-abundance.
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Figure 5: Some annihilation modes
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Direct detection is loop-suppressed and hard to see. 
Indirect detection: antiprotons, continuum 
gamma rays, gamma ray line. Bounds exist (safe 
above ~ 300 GeV). Keep looking!



NON-MSSM SUSY DM
Supersymmetry need not be minimal SUSY. Can have 
extended models with new DM candidates. For instance, 
axino dark matter or (Bellazzini, Csaki, Hubisz, Shao, 
Tanedo 1106.2162) Goldstone fermion dark matter.

gives vanishing F -terms while the Goldstone chiral multiplet is

A =
�

i

qifiψi

f
=

qY
f

�
Y fY −XfX + 2N̄fN̄

�
f 2 = q2Y

�
f 2
Y + f 2

X + 4f 2
N̄

�
. (A.5)

The corresponding b1 at tree-level is given by

b1 =
1

qf 2

�
�

i

q3i f
2
i

�
=

−f 2
X + f 2

Y + 8f 2
N̄

f 2
X + f 2

Y + 4f 2
N̄

(A.6)

which goes to b1 → 2 when fN̄ � fX,Y .

B Annihilation cross-section

B.1 χχ → gg

g

g

χ

χ

This cross section is controlled by the anomalous coupling (4.2) where can = αsqΨNΨ/(8π),
and the vertex b1/(2

√
2f)χ̄γµγ5χ∂µa. Away from the resonance one finds

σv =
2α2

s

(8π)3
NcN

2
Ψ(b1mχ + δma)

2 s2q2q2Ψ
(s−m2

a)
2f 4

s = (p1 + p2)
2 = 4E2

χ (B.1)

where v is the relative velocity in the center of mass frame, Nc = 8 is the number of colors in the
final state, and δ = −(α+ β)/2q is the contribution from the explicit breaking vertex (4.6). Note
that this process gives a non-vanishing s−wave annihilation component.

B.2 χχ → aa

B.2.1 t- and u-channel

a
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(a) χχ → gg
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which goes to b1 → 2 when fN̄ � fX,Y .
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This cross section is controlled by the anomalous coupling (4.2) where can = αsqΨNΨ/(8π),
and the vertex b1/(2

√
2f)χ̄γµγ5χ∂µa. Away from the resonance one finds

σv =
2α2

s

(8π)3
NcN

2
Ψ(b1mχ + δma)

2 s2q2q2Ψ
(s−m2

a)
2f 4

s = (p1 + p2)
2 = 4E2

χ (B.1)

where v is the relative velocity in the center of mass frame, Nc = 8 is the number of colors in the
final state, and δ = −(α+ β)/2q is the contribution from the explicit breaking vertex (4.6). Note
that this process gives a non-vanishing s−wave annihilation component.
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(b) χχ → aa

gives vanishing F -terms while the Goldstone chiral multiplet is

A =
�

i

qifiψi

f
=

qY
f

�
Y fY −XfX + 2N̄fN̄

�
f 2 = q2Y

�
f 2
Y + f 2

X + 4f 2
N̄

�
. (A.5)

The corresponding b1 at tree-level is given by

b1 =
1

qf 2

�
�

i

q3i f
2
i

�
=

−f 2
X + f 2

Y + 8f 2
N̄

f 2
X + f 2

Y + 4f 2
N̄

(A.6)

which goes to b1 → 2 when fN̄ � fX,Y .
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where v is the relative velocity in the center of mass frame, Nc = 8 is the number of colors in the
final state, and δ = −(α+ β)/2q is the contribution from the explicit breaking vertex (4.6). Note
that this process gives a non-vanishing s−wave annihilation component.
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(c) χχ → aa

In our case, we have only the p-wave contribution to the cross section, σv = a+ bv2 + . . .,

a =0 z = ma/mχ (B.2)

b =
m2

χ

96πf 4(z2 − 2)4
[b31(b1 + 4zδ)(3z8 − 16z6 + 48z4 − 64z2 + 32) (B.3)

+ z2δ2(3z8 − 14z6 + 46z4 − 64z2 + 32) + 16b1δ
3(z2 − 1)(b1z

3 + δ(z2 − 1))]

where δ = −(α + β)/2q is the contribution from the explicit breaking vertex (4.6).

B.2.2 Explicit breaking vertex

a

a

χ

χ

The contribution of the quartic to the annihilation cross-section is only p-wave and can be
easily calculated

σv =
1

128π
ρ2

m2
a

f 4/q4
va

�
s− 4m2

χ

s

�
va =

�
1− 4m2

a

s
(B.4)

where ρ is given in terms of the charges of the explicit breaking operators (4.6), ρ = α2+αβ+β2.

B.2.3 Interference

The contact interaction process interferes with the t- and u-channel. So summing the amplitudes
before squaring we get

b =
m2

χb
2
1

96πf 4
(2b21+8b1zδ+zρ)+

m2
χz

2

1536πf 4

�
3ρ2 + 32b1δρ+ 128b21δ

2 − 16b41
�
+o(z3) , a = 0 (B.5)

where vσ = a+ bv2 + . . . and z = ma/mχ.

B.3 Subleading processes

B.3.1 χχ → a∗ → ah

χ

χ
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h
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(d) χχ → aa

In our case, we have only the p-wave contribution to the cross section, σv = a+ bv2 + . . .,

a =0 z = ma/mχ (B.2)

b =
m2

χ

96πf 4(z2 − 2)4
[b31(b1 + 4zδ)(3z8 − 16z6 + 48z4 − 64z2 + 32) (B.3)

+ z2δ2(3z8 − 14z6 + 46z4 − 64z2 + 32) + 16b1δ
3(z2 − 1)(b1z

3 + δ(z2 − 1))]

where δ = −(α + β)/2q is the contribution from the explicit breaking vertex (4.6).

B.2.2 Explicit breaking vertex

a

a

χ

χ

The contribution of the quartic to the annihilation cross-section is only p-wave and can be
easily calculated

σv =
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where ρ is given in terms of the charges of the explicit breaking operators (4.6), ρ = α2+αβ+β2.

B.2.3 Interference

The contact interaction process interferes with the t- and u-channel. So summing the amplitudes
before squaring we get

b =
m2

χb
2
1

96πf 4
(2b21+8b1zδ+zρ)+

m2
χz

2

1536πf 4

�
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where vσ = a+ bv2 + . . . and z = ma/mχ.

B.3 Subleading processes

B.3.1 χχ → a∗ → ah
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(e) χχ → ha

This channel opens when 2mχ > ma + mh. Naively, it should be less important because
the cross-section has an extra suppression by (vEW/f)2. On the other hand, it has a s-wave
contribution and therefore the effect is not completely negligible compared to the χχ → aa b-
wave process. The cross-section is given by

σv =
va
32π

(b1mχ + δma)2c2hv
2
EW

f 6/q6

�
m2

a −m2
h + s

s−m2
a

�2

(B.6)

This has a non-vanishing s-wave contribution.

B.3.2 χχ → hh

h

h

χ

χ

This channel is allowed (up to thermal contributions) only when mχ > mh. Considering that
the Higgs can be buried under QCD, mh ∼ 90 GeV is possible. This process comes from a contact
interaction term chh(χ̄iγµ∂µχ)h2q2/(2f 2) which follows from the coefficients c2, d2 in the Kähler
potential.

σv =
va
8π

m2
χc

2
hh

f 4/q4

�
s− 4m2

χ

s

�
(B.7)

Once again, it is a p-wave process.
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(f) χχ → hh

Figure 5: Goldstone fermion annihilation channels.

B Annihilation cross section

Diagrams for the dominant annihilation channels are presented in Fig. 5.

B.1 χχ → gg

The annihilation cross section to gluons (see Fig. 5a) is controlled by the anomalous coupling (4.2)
where can = αsqΨNΨ/(8π) and the vertex b1/(2

√
2f)χ̄γµγ5χ∂µa. Away from resonance one finds

σv =
2α2

s

(8π)3
NcN

2
Ψ(b1mχ + δma)

2 s2q2Ψ
(s−m2

a)
2f 4

s = (p1 + p2)
2 = 4E2

χ (B.1)

where v is the relative velocity in the center of mass frame, Nc = 8 is the number of colors in the
final state, and δ = −(α + β)/2 is the contribution from the explicit breaking vertex (4.6). Note
that this process gives a non-vanishing s−wave annihilation component.

B.2 χχ → aa

Annihilation into Goldstone bosons proceeds through t- and u- channel diagrams (see Figs. 5b–5c)
as well as a contact interaction coming from explicit breaking (see Fig. 5d).
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Supersymmetrically break a U(1): Goldstone 
boson has a “Goldstone fermion” partner. 
Annihilates through anomaly to gg, γγ, γZ. 

Thermal relic abundance from p-wave:

gives vanishing F -terms while the Goldstone chiral multiplet is
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The corresponding b1 at tree-level is given by
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which goes to b1 → 2 when fN̄ � fX,Y .

B Annihilation cross-section

B.1 χχ → gg

g

g

χ

χ

This cross section is controlled by the anomalous coupling (4.2) where can = αsqΨNΨ/(8π),
and the vertex b1/(2

√
2f)χ̄γµγ5χ∂µa. Away from the resonance one finds

σv =
2α2

s

(8π)3
NcN

2
Ψ(b1mχ + δma)

2 s2q2q2Ψ
(s−m2
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2 = 4E2
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where v is the relative velocity in the center of mass frame, Nc = 8 is the number of colors in the
final state, and δ = −(α+ β)/2q is the contribution from the explicit breaking vertex (4.6). Note
that this process gives a non-vanishing s−wave annihilation component.

B.2 χχ → aa

B.2.1 t- and u-channel

a

a

χ

χ

a

a

χ

χ
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(a) χχ → gg
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The corresponding b1 at tree-level is given by
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which goes to b1 → 2 when fN̄ � fX,Y .

B Annihilation cross-section

B.1 χχ → gg

g

g

χ

χ

This cross section is controlled by the anomalous coupling (4.2) where can = αsqΨNΨ/(8π),
and the vertex b1/(2

√
2f)χ̄γµγ5χ∂µa. Away from the resonance one finds

σv =
2α2
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where v is the relative velocity in the center of mass frame, Nc = 8 is the number of colors in the
final state, and δ = −(α+ β)/2q is the contribution from the explicit breaking vertex (4.6). Note
that this process gives a non-vanishing s−wave annihilation component.

B.2 χχ → aa

B.2.1 t- and u-channel
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(b) χχ → aa
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which goes to b1 → 2 when fN̄ � fX,Y .

B Annihilation cross-section

B.1 χχ → gg

g
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This cross section is controlled by the anomalous coupling (4.2) where can = αsqΨNΨ/(8π),
and the vertex b1/(2

√
2f)χ̄γµγ5χ∂µa. Away from the resonance one finds
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where v is the relative velocity in the center of mass frame, Nc = 8 is the number of colors in the
final state, and δ = −(α+ β)/2q is the contribution from the explicit breaking vertex (4.6). Note
that this process gives a non-vanishing s−wave annihilation component.

B.2 χχ → aa

B.2.1 t- and u-channel
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χ
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(c) χχ → aa

In our case, we have only the p-wave contribution to the cross section, σv = a+ bv2 + . . .,

a =0 z = ma/mχ (B.2)

b =
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χ

96πf 4(z2 − 2)4
[b31(b1 + 4zδ)(3z8 − 16z6 + 48z4 − 64z2 + 32) (B.3)

+ z2δ2(3z8 − 14z6 + 46z4 − 64z2 + 32) + 16b1δ
3(z2 − 1)(b1z

3 + δ(z2 − 1))]

where δ = −(α + β)/2q is the contribution from the explicit breaking vertex (4.6).

B.2.2 Explicit breaking vertex
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The contribution of the quartic to the annihilation cross-section is only p-wave and can be
easily calculated
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where ρ is given in terms of the charges of the explicit breaking operators (4.6), ρ = α2+αβ+β2.

B.2.3 Interference

The contact interaction process interferes with the t- and u-channel. So summing the amplitudes
before squaring we get

b =
m2

χb
2
1

96πf 4
(2b21+8b1zδ+zρ)+

m2
χz

2

1536πf 4

�
3ρ2 + 32b1δρ+ 128b21δ

2 − 16b41
�
+o(z3) , a = 0 (B.5)

where vσ = a+ bv2 + . . . and z = ma/mχ.

B.3 Subleading processes
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(d) χχ → aa

In our case, we have only the p-wave contribution to the cross section, σv = a+ bv2 + . . .,

a =0 z = ma/mχ (B.2)
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where δ = −(α + β)/2q is the contribution from the explicit breaking vertex (4.6).
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where ρ is given in terms of the charges of the explicit breaking operators (4.6), ρ = α2+αβ+β2.

B.2.3 Interference

The contact interaction process interferes with the t- and u-channel. So summing the amplitudes
before squaring we get

b =
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where vσ = a+ bv2 + . . . and z = ma/mχ.
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(e) χχ → ha

This channel opens when 2mχ > ma + mh. Naively, it should be less important because
the cross-section has an extra suppression by (vEW/f)2. On the other hand, it has a s-wave
contribution and therefore the effect is not completely negligible compared to the χχ → aa b-
wave process. The cross-section is given by

σv =
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32π

(b1mχ + δma)2c2hv
2
EW
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This has a non-vanishing s-wave contribution.

B.3.2 χχ → hh

h
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χ

This channel is allowed (up to thermal contributions) only when mχ > mh. Considering that
the Higgs can be buried under QCD, mh ∼ 90 GeV is possible. This process comes from a contact
interaction term chh(χ̄iγµ∂µχ)h2q2/(2f 2) which follows from the coefficients c2, d2 in the Kähler
potential.
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Once again, it is a p-wave process.
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(f) χχ → hh

Figure 5: Goldstone fermion annihilation channels.

B Annihilation cross section

Diagrams for the dominant annihilation channels are presented in Fig. 5.

B.1 χχ → gg

The annihilation cross section to gluons (see Fig. 5a) is controlled by the anomalous coupling (4.2)
where can = αsqΨNΨ/(8π) and the vertex b1/(2

√
2f)χ̄γµγ5χ∂µa. Away from resonance one finds

σv =
2α2

s

(8π)3
NcN

2
Ψ(b1mχ + δma)

2 s2q2Ψ
(s−m2

a)
2f 4

s = (p1 + p2)
2 = 4E2

χ (B.1)

where v is the relative velocity in the center of mass frame, Nc = 8 is the number of colors in the
final state, and δ = −(α + β)/2 is the contribution from the explicit breaking vertex (4.6). Note
that this process gives a non-vanishing s−wave annihilation component.

B.2 χχ → aa

Annihilation into Goldstone bosons proceeds through t- and u- channel diagrams (see Figs. 5b–5c)
as well as a contact interaction coming from explicit breaking (see Fig. 5d).
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THE FERMI 130 GEV LINE

You all already know about it....
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Fig. 17.— Same as right panel of Figure 10 but with the cusp
template centered at ! = −1.5◦ and b = 0◦.
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Fig. 18.— Spectrum of emission within 4◦ of the cusp center
(!, b) = (−1.5, 0), excluding |b| < 0.5◦. High-incidence angle events
(upper panel) have a factor of ∼ 2 better energy resolution than
those that enter the LAT close to normal incidence (middle panel)
or the whole sample (lower panel). All three spectra have been
smoothed by a Gaussian of 0.06 FWHM in ∆E/E, similar to the
expected resolution of the upper panel. The continuum model is
dN/dE ∼ E−2.6, normalized at 20 < E < 50 GeV (blue dashed).

following test.
We select low incidence (θ < 30◦) and high incidence

(θ > 40◦) photon samples. We restrict to those near the
cusp center at (", b) = (−1.5, 0) (ψc < 4◦) but not in the
plane (|b| < 0.5◦). We then convolve each with a ker-
nel and compare them (Figure 18). We adopt an LSF
with a FWHM of ∆E/E = 0.06 for high incidence and
0.12 for low incidence (Edmonds 2011), and in both cases
convolve with another FWHM 0.06 Gaussian. After con-
volution, the LSF is FWHM 0.085 for high incidence and
0.134 for low incidence. Normalized Gaussians of these
widths are shown for reference, normalized to the ex-
pected line strength at 130 GeV. Maps constructed using
only high incidence events are shown in Figure 19.
Note that:

• The 129 GeV feature shape is strikingly similar to
that expected for a line. The 111 GeV feature is
unconvincing, but is also compatible with a line.

• In some cases, fluctuations appear, but are not
present in both low and high incidence spectra.

This analysis did introduce some additional parameters,
but we have made natural choices for them: The 68%
containment radius of the cusp is approximately 4◦, the
Galactic ridge is about 0.5◦ thick, and the ∆E/E = 0.06
smoothing kernel is similar to the LSF of the LAT at high
incidence. Smoothing a spectrum by its LSF is often a
good compromise between resolution and noise suppres-
sion in the high-noise limit. Because these parameters
are all fixed to natural values, there is no significant tri-
als factor for this test, apart from the obvious one, that
the lines could have appeared anywhere (Section 4.2).
This test did not have to succeed. The fact that the

high-incidence photon sample has sharper spectral fea-
tures is important; if the high-θ and low-θ spectra in
Figure 18 had been reversed, it would have been devas-
tating for the line hypothesis.

6.2. Null test: Galactic plane spectrum

To emphasize that the line feature in Figure 18 appears
near the Galactic center and not elsewhere, we perform
the same analysis on the Galactic plane (|b| < 2◦) away
from the GC (ψ > 5◦). We find no indication of a line
in either high-incidence or low-incidence photons (Figure
20).

6.3. Null test: Earth emission photons

Another null test is provided by the Earth emission
photons. Cosmic-ray induced cascades in the Earth’s
atmosphere shower photons on the LAT at high zenith
angle (Z > 108◦). These provide another null test, as
there is no reason for there to be a 130 GeV feature in
the Earth emission spectrum. On average, no feature
is seen (Figure 21). However, there is a hint of a line
at 130 GeV in the low-incidence events and one at 111

from Su/Finkbeiner, 
1206.1616

Note possibility of two lines consistent with γγ and γZ, 
which would be a real smoking gun if they’re both high 
significance with more data....



THE FERMI 130 GEV LINE
And you probably also know something odd appears 
when you look at the Earth:

But let’s set that aside for now (hard to think of what 
could lead to a spurious effect only when looking in 
certain places....)

Figure 3: Hmm
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“The call is coming from inside the house!”
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THE FERMI 130 GEV LINE

typically) a factor of e4/(8π2) lower, i.e. 〈σv〉 (γγ) ∼ 10
−29

cm
3/s. So we expect robust

tension between continuum gamma-ray bounds and annihilation through loops of
SM matter.

3. Subdominant wino DM? To illustrate the previous point: computing for winos in the

MSSM with Micromegas [16], we find at 128 GeV:

〈σv〉 (W̃ 0W̃ 0→W+W−) ≈ 3× 10
−24

cm
3/s (10)

〈σv〉 (W̃ 0W̃ 0→ γZ) ≈ 9× 10
−27

cm
3/s (11)

〈σv〉 (W̃ 0W̃ 0→ γγ) ≈ 2× 10
−27

cm
3/s (12)

If we believe Hooper’s results, then even if winos are only about 1/10 of all the dark

matter there is some tension with the galactic center, and the corresponding photon lines

would be at the 10
−28

cm
3/s level, too small to explain the observation. The suggestion

of Acharya et al. [17] is then ruled out, in an especially decisive way if Hooper’s bound

is correct.

4. Direct detection: Any dark matter that annihilates to γγ or γZ can in principle show up

in direct-detection experiments through either a loop process (exchanging two photons

or a photon and a Z with the nucleus) or the 2→ 3 process χN → χNγ. However, these

will typically be small enough that there is no limit (in fact, they may be small enough

that the neutrino background swamps any possible detection, possibly with the excep-

tion of directional direct detection). Estimates for a particular model appear in [18],
and are several orders of magnitude below the current limits.

I expect that any model consistent with Hooper’s tree-level continuum gamma-ray con-

straints will also be safe, or at worst borderline, from direct detection through Higgs

exchange. Can we make this statement more precise? This is interesting even inde-
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Dark matter isn’t charged, so need particles running in a 
loop (case of strongly-bound composite of charged 
particles is essentially this loop with a 4π coupling)

⇒
If the particle running in the loop is light enough, usually 
expect the tree-level process to be larger by a factor of 
(α/π)-2. In severe tension with continuum gamma ray 
bounds (unless only electrons and muons).



THE FERMI 130 GEV LINE
Whatever else it may be, it is not a signal of MSSM dark 
matter. (It may be SUSY DM, but not minimal SUSY.)

8
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FIG. 4: The 95% C.L. excluded region for Rob
, as defined in Eq. (10), versus mχ assuming annihilation

into W+W−
, Z Z for the supersaturation (left) and shape (right) analyses. For the supersaturation case,

the 1 σ statistical error bars are dashed. The plotted mass range corresponds to the 2 σ best fit region.

Note the different scale for the y-axes between plots; the shape analysis constraint is roughly O(10) stronger

than the supersaturation constraint. The constraints for bb̄ are similar. For comparison, Rth

wino
� 200 and

Rth

Higgsino
� 700. Pure wino and Higgsino dark matter are clearly excluded, as discussed in Sec. IV.

6 To compute the error bar we assume
√
N statistical fluctuations in the number of photons in the peak and in the

continuum bin.

Cohen, Lisanti, Slatyer, Wacker 1207.0800: bound on tree 
annihilation to WW, ZZ relative to gamma-ray line. (See 
also Buchmuller & Garny, 1206.7056.)

MSSM always has large tree/loop ratio.



NEW CHARGED PARTICLES 
ON THE HORIZON?
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Fermi-LAT 130 GeV line: dark 
matter annihilating through a loop?
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Figure 4: Some annihilation modes
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Modified Higgs to diphoton rate: a 
loop? (Fewest problems if charged 
but uncolored scalars.)
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Figure 4: Some annihilation modes
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Figure 5: Two-loop EDMs in supersymmetric theories. The one-loop diagram in the dashed box is a
“CPV-EWPT" term.
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Near future: improved bound (or signal) 
of electron EDM from ThO (DeMille / 
Doyle / Gabrielse ACME collaboration)



AXIONS

Axions remain extremely well-motivated 
theoretically.  The moduli cosmology scenarios 
mentioned earlier open up higher decay constants 
than the oft-quoted “axion window” as viable options 
(e.g. Kawasaki, Moroi, Yanagida, hep-ph/9510461). 

Clever recent idea: Graham & Rajendran, 1101.2691. 
Cold molecule interferometry to find time-varying 
dipole moments induced by axion DM. A very 
different form of dark matter direct detection! 



WHAT’S NEXT?
• If SUSY is right, could well be beyond the MSSM.

• Precision measurements of Higgs properties will either make 
the nightmare scenario more likely or give us confidence that 
new weak-scale physics is waiting for us.

• The Fermi-LAT 130 GeV line is tantalizing: hard to explain, but 
esp. if the second line at 111 GeV is there, hard to ignore.

• Keep looking for hard-to-find but theoretically motivated 
options: nonthermal wino DM, axions....

• Still hoping for more surprises!



BACKUPS



PGB HIGGS?
• Georgi/Kaplan ’84: strong dynamics can break a global 

symmetry, leaving Higgs as a pseudo-Nambu-
Goldstone boson, which gets a potential from explicit 
symmetry breaking

• Fermion mass generation is still a mess, like in technicolor

• Often must tune contributions that want the wrong vacuum 
alignment against others (naively, mass << VEV ~ fπ)

• Personal aesthetic bias: messy theories we should ignore 
unless data tells us otherwise

(Randall-Sundrum is an incantation that doesn’t solve your strong dynamics problems: existence of the theory?)



MSSM + SINGLET

One of the most familiar ways to lift the Higgs mass is to 
add a singlet superfield S and 

Contributes to the potential: 

W = λSHuHd + f(S)

New quartic means larger Higgs mass

|FS |2 =

����
∂W

∂S

����
2

⊃ |λHuHd|2



MSSM + SINGLET

One of the most familiar ways to lift the Higgs mass is to 
add a singlet superfield S and 

Contributes to the potential: 

W = λSHuHd + f(S)

New quartic means larger Higgs mass

|FS |2 =

����
∂W

∂S

����
2

⊃ |λHuHd|2

New quartic involves Hu and Hd; 
maximized at small tan beta.



MSSM + SINGLET?
Tension whenever there is a fundamental singlet 
scalar : tadpole vs domain wall

One way out: not really a fundamental singlet; it’s a 
bound state of stuff with charges.

Examples: Fat Higgs (Harnik, Kribs, Larson, Murayama), 
composite stop & Higgs (Csáki, Randall, Terning)

Objections: coincidence of scales (tuning!), gauge 
coupling unification is generically spoiled.



NON-DECOUPLING 
D-TERMS?

Charge the Higgs under another asymptotically free 
gauge group (e.g. Batra, Delgado, Kaplan, Tait, hep-ph/
0309149) to get new D-term quartics and maintain 
perturbativity to high scales.

SU(2) SU(2)
Break 
nonsupersymmetrically
to the diagonal.

SU(2)

e.g.

1

8

�
g
2 + g

�2�
���H0

u

��2 −
��H0

d

��2
�2

New terms of same form as



COUPLINGS

MSSM: b-quark Yukawa is ybHdbb̄

Large        : yb large, light Higgs h mostly Hu.tanβ

mb = ybvd = ybv cosβ

Due to h admixture of up- and down-type Higgses, find 
different coupling from the SM:

ghbb̄/g
SM
hbb̄ = − sinα

cosβ
≈ 1 +

2m2
Z

m2
A



COUPLINGS

ghbb̄/g
SM
hbb̄ = − sinα

cosβ
≈ 1 +

2m2
Z

m2
A

MSSM: mixing with heavy state near mA produces:

NMSSM: mix with singlet S. Tends to lower the 
branching ratio of Higgs to     . (Hence: raises photon 
BR.)

bb̄

New D-terms: δ

�
|Hu|2 − |Hd|2

�2

Alters up/down-type Higgs mixing relative to MSSM; 
changes corrections (see Blum & D’Agnolo, 1202.2364.)



COUPLINGS
The Higgs-gluon-gluon and Higgs-photon-photon 
couplings are related to beta function coefficients:

Let’s say, for instance, that m̃D dominates, and is 1 TeV, with λ = 0.1, Mmess = 100 TeV

(which is consistent with
√
F ∼ 100 TeV as well), mY = 2 TeV, and mS = 150 GeV. Then

we have:

m̃2
S = −2970 GeV2 ⇒ mscalar =

�
1502 − 2970 GeV ≈ 140 GeV. (2.4)

So, this model is easily compatible with the sort of splittings we’re interested in.

2.2 Couplings to Gauge Bosons and Gauginos

Now we will integrate out Y and Ȳ and study the induced couplings of S to gauge bosons.

To keep things simple, we will assume that the mass of the Y s is dominantly supersymmetric.

In that case, we expect to find an effective operator of the form:

c

mY

�
d2θSWαW

α + h.c. (2.5)

Let’s work out the coefficient c and then compute the resulting decays.

To compute the coefficient, let me try to flesh out JiJi’s statement that it’s related to a

beta function coefficient. Suppose we have a Lagrangian

L = − 1

4g2
Ga

µνG
aµν . (2.6)

Then in fact g is a running coupling. In particular, suppose that we have fields at a scale M ,

with µ < M < Λ, so that the beta function coefficient changes from b below M to b + ∆b

above M . Then taking account of that threshold,

1

g2(µ)
=

1

g2(Λ)
+

b

8π2
log

Λ

µ
+

∆b

8π2
log

Λ

M
. (2.7)

Now, the trick is to allow the threshold M to have spatial variation, M → M + δM(x), which

will lead to a spatially varying coupling at the scale µ:

1

g2(µ, x)
=

1

g2(µ)
+

∆b

8π2
log

M

M(x)
=

1

g2(µ)
− ∆b

8π2

δM(x)

M
. (2.8)

In our case, we have fermions with massmY +λS(x) and scalars with mass-squared |mY + λS(x)|2,
implying that to leading order for all the fields we integrate out, δM(x)

M = λS(x)
mY

. The contribu-

tion of the chiral multiplets Y, Ȳ to the beta function of SU(3) is that of one supersymmetric

flavor for SQCD, i.e. b = +1, so we have a coupling:

λ

32π2mY
SGa

µνG
aµν . (2.9)

If I then canonically normalize my gluon fields and change their name to F , this becomes:

λαs

8πmY
SF a

µνF
aµν . (2.10)
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Run from     down to     with an intermediate 
threshold                     at which the beta function 
changes from      to           .

Gauge theory:
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(which is consistent with
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we have:
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Now we will integrate out Y and Ȳ and study the induced couplings of S to gauge bosons.

To keep things simple, we will assume that the mass of the Y s is dominantly supersymmetric.

In that case, we expect to find an effective operator of the form:

c

mY

�
d2θSWαW

α + h.c. (2.5)

Let’s work out the coefficient c and then compute the resulting decays.

To compute the coefficient, let me try to flesh out JiJi’s statement that it’s related to a

beta function coefficient. Suppose we have a Lagrangian

L = − 1

4g2
Ga

µνG
aµν . (2.6)

Then in fact g is a running coupling. In particular, suppose that we have fields at a scale M ,

with µ < M < Λ, so that the beta function coefficient changes from b below M to b + ∆b

above M . Then taking account of that threshold,

1

g2(µ)
=

1

g2(Λ)
+

b

8π2
log

Λ

µ
+

∆b

8π2
log

Λ

M
. (2.7)

Now, the trick is to allow the threshold M to have spatial variation, M → M + δM(x), which

will lead to a spatially varying coupling at the scale µ:

1

g2(µ, x)
=

1

g2(µ)
+

∆b

8π2
log

M

M(x)
=

1

g2(µ)
− ∆b

8π2

δM(x)

M
. (2.8)

In our case, we have fermions with massmY +λS(x) and scalars with mass-squared |mY + λS(x)|2,
implying that to leading order for all the fields we integrate out, δM(x)

M = λS(x)
mY

. The contribu-
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RG:

(Shifman et al.)



LOW-ENERGY THEOREM
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In particular, if         depends on the Higgs,                    , 
then we extract an effective coupling:     

M(x) M = M(h(x))

∆b

32π2
hGa

µνG
aµν ∂ logM(v)

∂v



REMARKS

Any heavy matter with mass proportional to the Higgs 
VEV contributes with the same sign -- whether it’s a 
fermion or a scalar. Also, nondecoupling.

This tends to increase gluon fusion (reinforcing top 
contribution) and decrease photon BR (because W loop 
has the other sign.)

∆b

32π2
hGa

µνG
aµν ∂ logM(v)

∂v

�

i

∂ logMi(v)

∂v
=

∂ log detM(v)

∂vSum eigenstates:



STOPS

M2
t̃ =

�
m̃2

Q +
�
y2t +O(g2)

�
v2 ytv sinβXt

ytv sinβXt m̃2
u +

�
y2t +O(g�2)

�
v2

�

Here                          , the O(g2) parts are D-terms I will 
hereafter ignore, and the key point is that the Higgs 
VEV appears in both diagonal and off-diagonal 
terms.

For large soft masses:

Xt = At − µ cotβ

1

2

∂ log detM2
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m̃2
Q + m̃2

u −X2
t sin

2 β

m̃2
Qm̃

2
u −X2

t m
2
t sin

2 β
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Things to note:

Minus sign: large mixing 
leads to opposite-sign 

couplings

Small numerator factor 
(for heavy stops): no 
longer nondecoupling

Intuition: in the highly mixed case, larger VEV means more 
mixing, splitting light and heavy stops more. The light one 
contributes more, and is pushed lighter, so the overall sign 
reverses.



HIGGS COUPLINGS FOR 
NATURAL MODELS

Two effects we’ve discussed impact the Higgs 
production and decay:

Mixing alters bb rate, thus changing all other smaller 
branching ratios.

Loops alter gg and γγ couplings.

“Typically,” in natural models, can have effects ~20% or 
more. 

_



HIGGS: NEW PARTICLES IN 
LOOPS?

where the sign of the square root is determined by the sign of the hGG amplitude, and

ξ=
Q

2

C2(R)
C2(3)
Q

2
top
=

3Q
2

C2(R)
. (6)

As discussed recently in, for instance, Ref. [31], the choices of charge and representation are fairly
restricted by needing particles that can decay to the Standard Model (given the lack of detected stable
particles of exotic charge). We plot the possible effects of several examples of plausible charge assign-
ments in Figure 2. Each of the curves has two branches meeting at Rg = 0, with the upper branch
corresponding to the case with an inverted sign for the hGG amplitude. Notice that charge-2/3 color
triplets can improve the fit, but other charges for color triplets are of little help in the inverted sign
regime. (The charge 5/3 triplet discussed in Ref. [31]may help the fit slightly, but with the sign of hGG

not altered and hence the overall Higgs production rate decreased. This predicts that the measured
rate for h→WW, Z Z should decrease in the future.) The combination of a neutral and charge 1 color
octet with the same mass can give an interesting improvement in the fit. A color sextet of charge 2/3
can also offer some improvement.
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Figure 2: Fit of the WW , Z Z , and γγ channels in the ATLAS and CMS 7+8 TeV data, with 1σ and 2σ contours
as in the left-hand plot of Figure 1, but now showing the values achieved by adding particles in the loop in a
variety of representations of SU(3)c and U(1)EM.

A note on conventions: we will follow [32] in taking v ≈ 174 GeV. Our choices are such that yt ≈ 1,
m

2
W
= 1

2 g
2
v

2, and m
2
Z
= 1

2

�
g

2+ g
�2�

v
2.

2.2 New fermionic states

Let us first consider the case of new fermionic states. We assume two vectorlike pairs of fermions, ψ, ψ̄
and χ , χ̄ with charges such that Yukawa couplings Hψ̄χ and H

†χ̄ψ, so that the mass matrix in the

4

Simplified fit (only ATLAS 
and CMS WW, ZZ, gamma-
gamma from 7+8 TeV; no 
VBF, taus, etc.)

Invert the sign of hGG 
amplitude?

See also Giardino et al. 1207.1347; 
Buckley & Hooper 1207.1445; Cohen 
& Schmaltz 1207.3495....



HIGGS: NEW PARTICLES IN 
LOOPS?

3.1 Inverting hGG with Stops
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Figure 3: Stop parameter space that achieves a hGG coupling that is −1 times its Standard Model value. This
condition reduces the three-dimensional parameter space (mQ, mU , Xt) to two dimensions, which we parametrize
with mQ and mU . At left: contours of the lightest stop mass (orange, dashed) and the value of Xt needed to
achieve the desired coupling (purple, solid). At right: contours of the heavy stop mass (orange, dashed) and the
corresponding stop mixing sin2 θ t̃ parametrizing the right-handedness of the stop (purple, solid).

plot of effect on Higgs mass

plot of vacuum stability bounds

plot of fine-tuning?

3.2 Inverting hGG with charged scalar color octets

Here we will consider a different possibility that does not involve large mixing effects. If we drop the
assumption of supersymmetry, we can consider charged scalar octets that have a mass that decreases
with increasing Higgs mass,

V = −µ2H†H +λH

�
H†H
�2
+
�

m2
O −λHOH†H
�

O†O+λO

�
O†O
�2

, (14)

with λHO > 0. This is a simplified subset of the interactions that arise, for example, for the Manohar-
Wise scalar in the (8,2)1/2 representation of the Standard Model gauge group [39]. (Other interactions
contract the SU(2) indices of H with those of O.) This representation contains both a neutral scalar
O0 and a charged scalar O+; assuming they have the same mass, as they do with this simplified set of
interactions with the Higgs, one finds that they affect the Higgs decay widths as shown by the dashed
purple curve in Figure 2, which comes rather close to the best-fit point of our simplified χ2 fit.

conditions on the λ’s for vacuum stability

Landau poles

collider bounds?

7

Fermions generically cause Higgs vacuum stability problems 
(Arkani-Hamed, Blum, D’Agnolo, Fan 1207.4482)

But scalars are bad too, if corrections are this large: huge negative 
threshold corrections to Higgs quartic, color/charge-breaking minima. 
Reece, to appear on hep-ph (next week?)


