

GRAN SASSO

DARKSIDE

RICHARD SALDANHA 26th July 2012 IDENTIFICATION OF DARK MATTER 2012

DarkSide Program

- Direct detection search for WIMP dark matter
- Based on a two-phase argon time projection chamber (TPC)
- Design philosophy based on having very low background levels that can be further reduced through active suppression, for backgroundfree operation

DarkSide Program Multi-stage program at Gran Sasso National Laboratory DarkSide 10 Currently running full prototype detector

> DarkSide 50 First physics detector Physics goal ~ 10⁻⁴⁵ cm²

> DarkSide G2 Multi-ton detector Physics Goal ~ 10⁻⁴⁷ cm²

+ multiple smaller test setups and prototypes

DarkSide 10

TPB + ITO coated quartz window

Acrylic cylinder with TPB-coated reflector

7x 3" PMTs

Flexible PCB field cage

TPB + ITO coated quartz window

7x 3" PMTs

DarkSide 10

First designed, built and operated at Princeton University

Moved underground at Gran Sasso to operate in a lowbackground environment

Dedicated campaigns to test light collection, high voltage and other technical solutions for future detectors

Light Yield Measurements

The single photoelectron response of each tube was measured using a fast, pulsed laser

Detector light yield was measured using a series of external γ sources at null field

Energy [keV]	L.Y. [p.e. / keV]	Resolution (ơ)
122	8.87	5.2
511	8.78	3.4
662	9.08	3.1
1275	8.60	2.9
AVERAGE	8.9 +/- 0.4	6

arXiv:1204.6218 [astro-ph.IM]

S1 and S2 signals

With drift fields on, the recoil energy is divided into a light (S1) and charge (S2) signal

 $E_{rec} \propto S1 + k \cdot S2$

S1 and S2 are anti-correlated The sum is independent of the drift field

Neutron Calibration

Data was taken with an external Am-Be neutron source with the detector in TPC mode

Background

Am-Be Source

Study of discrimination currently underway

DS-10 Performance

- Compare performance of different reflectors for light collection
 Detector run with both 3M foils (~ 9 p.e./keVee) and highly crystalline PTFE (~ 7 p.e/keVee)
- Study feasibility of ITO coatings
- Test HHV system (feedthroughs, grid etc.)
 Detector running without problems at nominal field configuration (1 kV/cm drift, 3.8 kV/cm extraction)
- Perform calibration of detector
 Calibrations performed with external γ and neutron sources. ⁸³Kr source to be implemented soon
- Optimize field configuration of TPC
 Different field configurations under consideration

DarkSide 50

Radon-free clean room

Instrumented water tank

Liquid scintillator

Inner detector TPC (Underground argon)

External Water tank

- 80 PMTs within Borexino CTF (11m dia. x 10 m high)
- Acts as a muon and cosmogenic veto (~ 99% efficiency)
- Provides passive gamma and neutron shielding

Liquid Scintillator Veto

Liquid scintillator allows coincident veto of neutrons in the TPC and provides *in situ* measurement of the neutron background rate

4 m diameter sphere containing 1:1 PC + TMB scintillator

Instrumented with 110 8" PMTs

Borated Liquid Scintillator

- High neutron capture cross section on boron allows for compact veto size
- Capture results in 1.47 MeV α particle
 detected with high efficiency
- Short capture time (2.3 µs) reduces dead time loss

	Veto Efficiency		
Radiogenic Neutrons	> 99.5%*		
Cosmogenic Neutrons	> 95%		

Nuclear Instruments and Methods A 644, 18 (2011)

Liquid Scintillator Tank

14

CTF tank has been emptied

Liquid scintillator tank assembly has recently been completed

Inner detector TPC

19x 3" PMTs

TPB + ITO coated quartz diving bell

Copper field cage rings

TPB coated Highly Crystalline PTFE ~ 50 kg LAr

TPB + ITO coated quartz window

19x 3" PMTs

39Ar

- Intrinsic ³⁹Ar radioactivity in atmospheric argon is the primary background for argonbased detectors
- ³⁹Ar activity sets the dark matter detection threshold at low energies (where pulse shape discrimination is ineffective)
- Size of large argon TPC's is limited by the pileup rate induced by ³⁹Ar

Underground Argon

- ⁴⁰Ar is mostly produced underground (through decay of ⁴⁰K)
- ³⁹Ar is cosmogenic, produced by ⁴⁰Ar(n,2n) interactions in the atmosphere
- Argon that has remained underground can therefore have extremely low levels of ³⁹Ar
- However, ³⁹Ar can also be produced underground through ³⁹K(n, p) interactions, where the neutron originates from (α, n) reactions.

³⁹Ar/⁴⁰Ar depends on the local concentration of ²³⁸U and ²³²Th

Underground Argon

Underground Argon from CO₂ plant in Cortez Colorado

VPSA system (Cortez) 0.5 kg/day production 110 kg produced so far

arXiv:1204.6024 [astro-ph.IM]

	CO ₂	N ₂	He	Ar
	[%]	[%]	[%]	[%]
CO ₂ Plant Output	96	2.4	0.4	0.06
VPSA output	~ 0	40	55	5
Cryogenic Distillation output	~ 0	< 0.05	~ 0	> 99.95

Cryogenic Distillation system 0.9 kg/day production 70 - 81% efficiency ~ 19 kg produced so far

arXiv:1204.6061 [astro-ph.IM]

Underground Argon Measurement

Low background LAr detector was operated underground at KURF with both atmospheric and underground argon

arXiv:1204.60111 [physics.ins-det]

	Total Rate [mBq/100 keV]	Estimated Background Rate [mBq/100 keV]	Background Subtracted Rate [mBq/100 keV]		
Underground Argon	1.87 +/- 0.06	15./00	0.32 +/- 0.23	* Includes ⁸⁵ K upper limit	
Atmospheric Argon	108.8 +/- 0.4	1.5 +/- 0.2	107.2 +/- 1.9*		
³⁹ Ar Depletion Factor	1.71 +/- 0.05 %		< 0.65 % (95 CL)		

Expected Backgrounds

Detector Element	Electron Recoil		Radiogenic Neutron		Cosmogenic Neutron	
	Backgrounds		Recoil Backgrounds		Recoil Backgrounds	
	Raw	After Cuts	Raw	After Cuts	Raw	After Cuts
$^{39}\text{Ar} (< 0.01 \text{Bq/kg})$	$< 6.3 \times 10^{6}$	$<4 \times 10^{-3}$	—		_	
Fused Silica	3.3×10^{4}	2.0×10^{-5}	0.17	4.3×10^{-4}	0.21	1.3×10^{-5}
PTFE	$4,\!800$	3.0×10^{-6}	0.39	9.8×10^{-4}	2.7	1.6×10^{-4}
Copper	$4,\!500$	2.8×10^{-6}	5.0×10^{-3}	1.3×10^{-5}	1.5	9.0×10^{-5}
R11065 $PMTs$	2.6×10^6	1.6×10^{-3}	19.4	4.8×10^{-2}	0.34	2.0×10^{-5}
Stainless Steel	5.5×10^4	3.4×10^{-5}	2.5	6.3×10^{-3}	30	0.0018
Veto Scintillator	70	4.3×10^{-8}	0.030	7.5×10^{-5}	26	0.0016
Veto PMTs	2.5×10^6	1.6×10^{-3}	0.023	5.8×10^{-5}	—	
Veto tank	$1.7{ imes}10^5$	1.1×10^{-4}	6.7×10^{-5}	1.7×10^{-7}	19	0.0071
Water	$6,\!100$	3.8×10^{-6}	6.7×10^{-4}	1.7×10^{-6}	19	0.0071
CTF tank	$8,\!300$	5.1×10^{-6}	3.5×10^{-3}	8.7×10^{-6}	0.068	2.6×10^{-5}
LNGS Rock	920	5.7×10^{-7}	0.061	1.5×10^{-4}	0.31	0.012
Total	—	0.007	-	0.055	—	0.030

0.1 ton x year exposure, 30 - 200 keV_r window, 50% nuclear recoil acceptance

Sensitivity

DarkSide Collaboration

Augustana College, SD Black Hills State University, SD Drexel University, PA Fermi National Accelerator Laboratory, IL Princeton University, NJ Temple University, PA University of Arkansas, AR University of California, Los Angeles CA University of Houston, TX University of Massachusetts, Amherst, MA Virginia Tech, VA

Laboratori Nazionali del Gran Sasso, Assergi Universita degli Studi and INFN, Genova Universita degli Studi and INFN, Milano Universita degli Studi and INFN, Perugia Universita degli Studi Federico II and INFN, Napoli

Smoluchowski Institute of Physics, Krakow

★** *

Institute of High Energy Physics, Beijing

Joint Institute for Nuclear Research, Dubna Skobeltsyn Institute for Nuclear Physics, Moscow National Research Centre Kurchatov Institute, Moscow St. Petersburg Nuclear Physics Institute, Gatchina

Institute of Nuclear Research, Kiev

University College London, London