The **CRESST-II** Experiment

Status Update

Christian Strandhagen (University Tübingen) on behalf of the CRESST Collaboration

IDM 2012 Chicago

The CRESST-II Experiment

- direct dark matter search with cryogenic detectors
- target material: scintillating CaWO₄ crystals

- located in hall A of the LNGS
- up to 10 kg target mass

The CRESST-II Setup at LNGS

CRESST-II Detectors

Transition Edge Sensors (TES)

Advantages Of Our Detectors

- precise calorimetric measurement of deposited energy
- low energy threshold and excellent energy resolution
- possibility to use different materials

CRESST-II Detectors

Light Detector Phonon Detector 300 g CaWO₄ crystal silicon on sapphire reflective bronze absorber clamps tungsten TES 40 mm tungsten TES reflective and 40 mm 40 mm scintillating foil

Discrimination Power

 excellent event-by-event discrimination of dominant background (e⁻/γ) and signal (nuclear recoils)

- to some extent: identification of recoiling nucleus
 - → probes WIMP interaction with **different targets simultaneously**
 - → useful for identification of backgrounds

Latest Results

- extensive, successful physics run of CRESST-II (July 2009 – March 2011)
- 8 CaWO₄ modules (300g each) used in analysis
- net exposure of ~730 kg days
- 67 events observed in acceptance region
- likelihood analysis considering all known backgrounds in

"Results from 730 kg days of the CRESST-II Dark Matter Search" *Eur. Phys. J. C (2012) 72-1971; arXiv: 1109.0702*

γ / e[·] background

- dominant background source
- ~10⁴ events/kg/yr
- excellent discrimination
- expected gamma leakage of 1 event per module defines lower threshold of acceptance region

alpha background

- usually: discrete alpha line in MeV regime
- alpha emitters in clamps holding the crystals (e.g. ²¹⁰Po)

- degraded alphas down to keV
 - overlap with acceptance region

Pb recoil background

• ²¹⁰Po decay on surface

²¹⁰Po \rightarrow ²⁰⁶Pb (103 keV) + α (5.3 MeV)

- if α hits **scintillating foil**:
 - light emission
 - event **can be identified** via signal in light detector

Pb recoil background

• ²¹⁰Po decay on surface

- if α hits non-scintillating clamp:
 - no light emission
 - energy loss in clamp leads to leakage into acceptance region

Light Yield 0.2

20

0

40

60

80

Energy [keV]

100

120

140

neutron background

- neutrons mainly scatter off oxygen
- unlike WIMPs they have the chance to scatter in multiple detectors
- **3 events** with a signal in multiple detectors observed
- **measured** distribution of detector **multiplicities** is used to estimate neutron background

Estimation Of Neutron Background

there are two classes of neutrons exhibiting different multiplicity characteristics

neutrons can only explain a fraction of the observed events

Results from Likelihood Analysis

- background-only hypothesis rejected with high statistical significance
 → additional source of events needed
- WIMPs would be a source with suitable properties

 → two solutions found depending on composition of recoil spectrum

	M1	M2
e ⁻ /γ-events	8.00 ± 0.05	8.00 ± 0.05
α-events	11.5 ^{+2.6} - 2.3	11.2 ^{+2.5} - 2.3
neutron events	7.5 ^{+6.3} - 5.5	9.7 ^{+6.1} - 5.1
Pb recoils	15.0 ^{+5.2} - 5.1	18.7 ^{+4.9} - 4.7
signal events	29.4 ^{+8.6} _{- 7.7}	24.2 ^{+8.1} - 7.2
m _x [GeV]	25.3	11.6
σ _{wn} [pb]	1.6 · 10 ⁻⁶	3.7 · 10 ⁻⁵
stat. significance	4.7 σ	4.2 σ

C. Strandhagen

C. Strandhagen

IDM 2012 Chicago

only γ-leakage can explain shape of energy spectrum

light yield of γ-leakage is too high

C. Strandhagen

energy spectrum of Pb recoils has the wrong shape

only Pb recoil background can explain low light yield events

C. Strandhagen

IDM 2012 Chicago

Results from Likelihood Analysis

Next Run ...

highest priority: reduction of α and Pb recoil background

- new material for clamps
 → more radio-pure
- reduce radon exposure during mounting
- fully scintillating modules to identify recoil background events

Summary/Conclusion

- succesful physics run over two years
- 67 events observed in acceptance region
- multimaterial target has proven to be valuable for identification of backgrounds
- unclear situation: light WIMPs or background?
- preparations for next run are ongoing
 reduction of backgrounds of highest priority

Thank You.