

IDM 2012

The XENON1T Experiment

Ranny Budnik Columbia University

On behalf of the XENON1T collaboration

Status in WIMP DM Sensitivities (2012)

O N

Dark Matter Project

The Future of Direct Dark Matter Searches (next ~5 years)

Dark Matter Project but we hope for a detection

(Assuming standard isothermal halo, 220 km/s, escape vel. 540 km/s)

4

Reminder:

X E N O N Dark Matter Project Liquid Xenon for Dark Matter Search

- Large atomic number A~131 best for SI interactions (σ~A²).
 Need low threshold.
- ~50% odd isotopes: SD interactions
 If DM detected: probe physics with the same
 detector using isotopically enriched media.
- No[#] long-lived Xe isotopes.
 But control Kr-85, Rn-222. [#]Xe-136 2vββ
- High Z (54) and density: compact & self-shielding
- Scalability to large mass.
- "Easy" cryogenics (-100°C).
- Efficient and fast scintillator.
- Good ionization medium, long drift.
- Background discrimination in TPC.
 - Ionization/Scintillation
 - 3D imaging of TPC

H	Periodic Table of the Elements									He								
Li 3	Be	 hydrogen alkali metals alkali earth metals 				 poor metals nonmetals noble gases 				B	C	N	08	F	10 Ne			
11 Na	12 Mg	📕 transition metals 👘 🔳 rare ea					re ear	th met	als		AI	14 Si	15 P	16 S	17 Cl	18 Ar		
19 K	Ca ²⁰	SC	22 Ti	V ²³	Cr ²⁴	25 Mn	Fe ²⁶	C0	28 Ni	Cu Cu	Zn Zn	Ga ³¹	Ge ³²	As	se Se	35 Br	36 Kr	
87 Rb	³⁸ Sr	³⁹ Y	Zr	41 Nb	42 Mo	43 TC	44 Ru	Rh	46 Pd	Ag	Cd	49 In	50 Sn	51 Sb	Te ⁵²	57 	Xe ⁵⁴	
Cs	Ba	57 La	Hf	73 Ta	74 W	Re	⁷⁶ Os	⁷⁷ Ir	Pt	79 Au	Hg	81 Ti	⁸² Pb	83 Bi	⁸⁴ Po	At 85	Rn	
87 Fr	⁸⁸ Ra	Ac	¹⁰⁴ Unq	¹⁰⁵ Unp	106 Unh	¹⁰⁷ Uns	108 Uno	¹⁰⁹ Une	110 Unn									

Reminder:

X E N O N Dark Matter Project The Liquid Xenon Dual Phase TPC

Ionization + Scintillation

- WIMP recoil on Xe nucleus in dense liquid (2.9 g/cm³)
 → Ionization + UV Scintillation
- Detection of primary scintillation light (S1) with PMTs.
- Charge drift towards liquid/gas interface.
- Charge extraction liquid/gas at high field between ground mesh (liquid) and anode (gas)
- Charge produces proportional scintillation signal (S2) in the gas phase (12 kV/cm)

3D position measurement

- X/Y from S2 signal. Resolution few mm.
- Z from electron drift time (~0.3 mm).

6

Background Discrimination in Dual Phase Liquid Xenon TPC's

3D Position Resolution: fiducial cut, singles/multiples

IDM 2012

The XENON1T Collaboration

Columbia

Rice

UCLA

Coimbra

Purdue

PURDUE

Bologna

Subatech

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER Münster

MPI-K

Heidelberg Weizmann

LNGS, Italy

XENON1T in Hall B (next to Icarus) @ LNGS

XENON1T (2011-2015)

- Liquid xenon TPC to explore $\sigma \sim 2 \times 10^{\text{-47}} \ \text{cm}^2$
- Detector size:
 ~ 1 m³, ~ 3 t LXe, ~ 1 t fiducial mass
- Water Cherenkov Muon Veto
- Approved by INFN.
- Funded.
- Construction start: fall 2012.

LNGS, Italy

IDM 2012

Xp

XENON1T in Hall B (next to Icarus) @ LNGS

XENON1T (2011-2015)

- Liquid xenon TPC to explore $\sigma \sim 2 \times 10^{-47}$ cm^2
- Detector size:
 - 1 / e, ~ 1 t fiducial mass
- Wirr Cheren Muon Veto
- A roved by IN
- F ded.
- fall 2012.

LNGS Underground Laboratory - Hall B

LNGS Underground Laboratory - Hall B

Yes, it's fake. It will be there, though..

> WEIZMANN INSTITUTE OF SCIENCE

INFN-LNGS

XENON1T design challenges

	Backgrour	nd*	Xe purity	HV		
	Total	Rn/Kr	(e ⁻ lifetime)			
XENON100	~5·10⁻³ dru (events/kg/ke V/day)	Kr: ∼20 ppt Rn ~65 µBq/kg	160 kg @ ~400 µs In several months	30 cm @0.53 kV/cm		
XENON1T essentials	~5·10⁻⁵ dru (Events/kg/ke V/day)	Kr: 0.5 ppt Rn: ∼1 µBq/kg	~3 tons @ ~1000 µs In ~2 months	100 cm @ 1 kv/cm		
By how much should we improve?	X 100	Kr: X 40 Rn: X 50	X 3 (purity) X 50 (purification speed)	X 6		

* In FV, including Veto, before discrimination

IDM 2012

14

PMTs

- 2 × 121 3" PMTs by Hamamatsu
- QE: 30% min., >35% achieved

R. Budnik, Columbia University

QUPID

3 inch

 $(64 \text{mm}/71 \text{mm} \phi)$

R11410

3 inch

 $(64 \text{mm}/77.5 \text{ mm } \phi)$

Water Cerenkov Muon Veto

Concept:

- •Water tank:
- ~10 m high and 9.6 m in diameter
- •84 high QE 8" PMTs Hamamatsu R5912 with water-tight base
- •Specular Reflector: foil DF2000MA by 3M

Bologna – Mainz – Torino

Trigger requirements:

- single photoelectron
- 4 fold coincidence
- time window: 300 ns

Trigger efficiency

- > 99.5% for neutrons with muons in WT
- ~ 78% for neutrons with μ 's outside WT

µ-induced neutron background

- 0.01 per year
- « WIMP signal

Cryostat

Baseline design

- Ti grade 1 double-walled cryostat
- UHV compatible, low outgas rate
- Heat load < 50 W
- Immersed in water shield
- **Buoyancy** load
- LNGS seismic environment
- Safety review currently ongoing

Columbia – Nikhef

Cryostat **Baseline design** Ti grade 1 double-walled • cryostat 9.6 m UHV compatible, low infra outgas rate Heat load < 50 W cryostat 1.5m shield • CUSTOM TITANIUM OF FLANGE 3 PLS, SEE NOTE 22 1.3m Columbia - Nikhef OM TITANIUM OF FLANGE 3 PLS, SEE NOTE 22 ntly water tank

IDM 2012

Columbia - Nikhef

IDM 2012

Xenon Purification & Rn-Removal

- ¹/₂ inch gas lines, VCR connections
- Orbitally welded
- Pneumatic valves
- SAES PS4-MT50 getter
- QDrive and KNF pumps
- Dedicated monitors for ppb-level impurities (H₂O, O₂, Kr)

Xe purification system with Rn removal in charcoal column

Münster (Xe purification) – MPIK (Rn column)

Xe purification system

Ongoing R&D: XENON1T Demonstrator

- Demonstrated high speed circulation >800 kg/day
- Cryogenics full prototype
 >130 W spare cooling power
- Circulation pumps:
 - KNF (diaphragm)
 - Qdrive (full metal seal)

Built at Nevis Labs, Columbia

IDM 2012

Dark Matter Project

X E N O N Dark Matter Project

Ongoing R&D: XENON1T Demonstrator

- Fast Purification: 1ms lifetime in ~12h (25 kg)
- 30 cm drift TPC, R11410 and R8520 PMTs
- HV FT @ 100 kV in Lxe
- 1m Full HV TPC in a month

Columbia, Rice, UCLA

IDM 2012

Krypton Removal

- Cryogenic distillation
- Reduce ppb Kr traces in Xe gas to ppt
- proven technique, achieved (19 +- 1) ppt in XENON100

Design Parameters for XENON1T

- through-put: 3 kg/hr
- factor of 10⁴-10⁵ separation <sup>y₂=x₁=x₀
 </sup>

condensor

IDM 2012

Dark Matter Project

R. Budnik, Columbia University

4.5

m

•

Krypton Analysis

- Kr measurements with gas chromatography plus Rare Gas Mass Spectroscopy RGMS
 - measurement of ^{nat}Kr to ppt level
 - extrapolation to ⁸⁵Kr from atmospheric abundance
 - gas chromatography: Xe separation
 - demonstrated for XENON100
- ⁸⁴Kr measurement with atomic trap ATTA
 - measurement of ⁸⁴Kr to ppt level
 - extrapolation to ⁸⁵Kr from atmospheric abundance
 - Atom trap operational and efficient for Ar*
 - First Kr/Xe measurements for XENON100 by Fall 2012

MPIK (RGMS) – Columbia (ATTA)

Material Screening

- Gamma-ray screening with sensitivity ~10 µBq/kg with GeMPIs and Gator, located at LNGS
- Gas counting systems, located at LNGS and MPIK, for ²²²Rn measurements at few atoms sensitivity
- ICPMS @ LNGS, UCLA Inductively coupled plasma mass spectrometry
- Neutron activation analysis @ PSI, Mainz

L. Baudis, et al. JINST 6 P08010, 2011

IDM 2012

O N

Dark Matter Project

XENON1T Background Simulations

IDM 2012

R. Budnik, Columbia University

Xenon Storage ReStoX : Recuperation and Storage system of XENON1T

Can be easily scalable to larger sizes

Dark Matter Project

Organizing

- 1. Infrastructure F. Arneodo (LNGS)
- 2. Muon veto W. Fulgione (INFN-Torino), S. Fattori (Mainz)
- 3. Water tank H. Landsman (Weizmann)
- 4. Detector: TPC, Grids, HV M. Messina (Columbia), M. Schumann (Zurich)
- 5. PMTs K.Arisaka (UCLA)
- 6. Cryostat & Support Platform) G. Tajiri (Columbia), A. Colijn (Nikhef)
- 7. Cryogenics G. Plante , R. Budnik (Columbia)
- 8. Cryogenic storage vessel L. Scotto Lavina (Subatech)
- 9. Slow control J. Cardoso (Coimbra)
- 10. Material screening and selection A. D. Ferella (Zurich), J.Schreider (MPIK)
- 11. Distillation column C. Weinheimer (Munster)
- 12. Xe Purification E. Brown (Munster), A. Malgarejo (Columbia)
- 13. Gas purity and analytics H. Simgen (MPKI)
- 14. Calibration A. Kish (Zurich), R. Lang (Purdue)
- 15. Monte Carlo simulation C. Cham (UCLA), M. Selvi (Bologna)
- 16. DAQ and Trigger M. Schumann (UZH), P. Decowski (Nikhef)

And now...

Xenon1T Master schedule 04152012 v3

To work!

Summary

- XENON1T is funded and on schedule
- Sensitivity goal for SI cross section of 10⁻⁴⁷ cm² expected by 2017
- All challenges are addressed:
 - Background
 - Purity
 - High Voltage
- Construction on site starts this fall
- Getting exciting...

