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@ interleaved Z-sensitive lonisation &
Phonon detector (iZIP)

@ 3¢ x 1” thick, 600 g Ge crystals
Simultaneous measurement of
phonon & charge signals

@ Interleaved electrodes so surface
events show up on one detector
side only




@ iZIP technology appears to meet
requirements for larger target

\\\ Gpeen masses

‘ @ Scaling difficult: ~ 340 3"¢ x 1”
crystals for 200 kg mass
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@ A number of factors make this
expensive:

e

1 SuperCDM:
\Soudan (Proj,
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@ Increased manpower: fabrication
and testing are labour intensive

ST WIMP-nucleon cross-section (sz)

SuperCOMSY. @ Increased heat load: additional
SNOLAB (Proj.) N 2 o ..
107 o R wiring to room temperature
10" 10° 10° @ Increased cold hardware and
Wimp Mass (GeV/c?) warm electronics

Increasing the size of individual detectors can help alleviate these issues
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 The Road to 100 mm GermaniimDS

@ Up to 100 mm diameter detector-grade Ge ‘
crystals can be grown - S R

@ Three crystals of thickness 33.3 mm and mass
1.37 kg have been/are being tested:
@ lonisation test device
@ Spiral electrode device
© First 100 mm iZIP design

@ Tests performed with existing CDMS-11 3" cold
hardware with minor modifications:

o CDMS-II tower, side coaxes, cold electronics
cards and striplines

@ New extender plug to bridge gap between
tower and side coax

@ New detector housing to encase larger diameter
crystal

@ Tests utilise new warm electronics designed for
SuperCDMS SNOLAB




@ lonisation electrodes patterned as 4
concentric rings

@ Crystal volume of 64.3 cm3 lies
under each electrode for
comparable responses

@ Electrodes separated by 400 pum
wide trenches

@ Each electrode consists of a grid of
2 pm thick wires at pitch of 40 ym

@ Sections of two inner electrodes
extend through gaps to bring them
closer to the detector edge for
readout

@ Uniform grid at ground present on
opposite face



50 @ Electrodes labelled Q1 from
centre to Q4 at edge

-30 10 10 30 50
Units: mm
(DIB 2 side)
@ 60 keV y-rays from four 24! Am sources
used for ionisation measurements
@ Each source collimated (activity ~ 20 Bq)

@ Each source placed above centre of
electrode as shown by red dots
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@ Mean free path of 60 keV ~-rays in Ge is ~ 1 mm
@ Vary bias and determine change in position of 60 keV peaks
@ Outer channel Q4 used as veto

Uncalibrated charge spectra
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@ Mean free path of 60 keV ~-rays in Ge is ~ 1 mm
@ Vary bias and determine change in position of 60 keV peaks
@ Outer channel Q4 used as veto

30 mm ¢ X 10 mm thick crystal 100 mm ¢ X 33.3 mm thick crystal
from T. A. Shutt Ph.D. thesis, Berkeley (1993) from H. Chagani et al., J. Low Temp. Phys. 167 (2012) 1125
G102 Charge Collection Efficiency
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@ Results consistent with scaling past measurements on 1 cm thick
crystals:
@ Bias voltage of 1.7 V required for complete charge collection
@ These crystals have necessary charge collection efficiency to be
operated as dark matter detectors
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Q1 charge collection efficiency comparison Q2 charge collection efficiency comparison
(normalized to 1 at -8V) (normalized to 1 at -8V)
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Q3 charge collection efficiency comparison
(normalized to 1 at -8V)

@ Use 356 keV line from external g
133Ba source to measure charge - A
collection efficiency in bulk v 3 :
@ Three inner electrodes exhibit § 08 ¥
similar response T 06 1§y 1
. L % ——Q3,Ba-133
@ Charge collection efficiencies 504 W ——Q3, Am-241
measured with 2*Am & 33Ba C 08 642024063810
sources are consistent Bias [V]
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lonisati

@ lonisation signal stability increases with bias
@ Similar behaviour seen collecting electrons as that when collecting
holes

-4.0 V bias -6.0 V bias
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@ Short bursts of LED flashes over a period of < 6 s successfully
remove charge traps and reset detector to its original state
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The Sp

@ Two electrodes on each crystal

vo pi i face: inner disk and outer ring
/ @ Grounded ribbon of width 250 pum
interleaved with charge ribbons of
width 40 pm

—

—— =

@ Inner disk covers ~ 66% of surface
area

@ Centres of grounded and charge
ribbons lie 1.5 mm apart

@ Top side is mirror of bottom face
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@ One ?'Am source installed facing inner charge channel on Side 2
@ Mean free path of 60 keV ~-rays in Ge is ~ 1 mm
@ Grounded and charge ribbon centres lie 1.5 mm apart

@ Electrons/holes from 60 keV events mostly show up on Side 2

[ Charge Spectrum : Side 2 bias = -4.0V__| Location of Am-241 Qinner 60 keV events
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timing cut defined as (Time of event) < 150 s from start of .data acquisition

radial partioning = 0 is central cylinder axis,
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[ Sum of Inner & Outer Charge Channels | [ Inner Charge Channel Only ]
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@ 356 keV line from external 133Ba source used to measure charge
collection efficiency in bulk

@ Curves normalised to unity at —12 V bias

@ Charge collection efficiencies for both sides are reasonably uniform
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@ Two electrodes on each crystal
face: inner disk and outer ring

@ 12 phonon channels, six on each
side

@ Phonon ribbons of width 260 um

interleaves with charge ribbons of
width 50 pm

@ Centres of phonon and charge
ribbons lie 1.5 mm apart

@ Phonon channels rotated by 45 O - 2
degrees about central axis on g
bottom face
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® Readout through 3 Device Interface Boards (DIBs), to which
CDMS-II side coaxes are attached

G103a ONLY Channel/DIB Layout @ Transition Edge Sensors’ (TES)
6/21/2012 critical temperatures lie between
Side 1 - Top Side 2 - Bottom peratu
76 mK & 86 mK

DIBI-D

DIB1-ABCQiQo

@ No significant difference between
critical temperatures on both sides
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@ Phonon pulse decay time =~ 0.8 ms, Side 1 Channel C

in line with what we expect
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[ Charge Spectrum : Side 1 bias =-4.0V | [ Charge as a function of Time : Side 1 bias = +4.0 V
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@ Cryostat surrounded by new lead-polyethylene shield which should
reduce background flux by a factor of ~ 5 at surface testing facility

Detector exposed to 33Ba source for half-an-hour
Peaks at 302 keV & 356 keV very clear
Peak at 384 keV visible

lonisation signal stable for at least 30 minutes at -4.0 V bias
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Conclu

@ 100 mm diameter Ge crystals have necessary charge collection
efficiency to be operated as dark matter detectors

@ iZIP principles, such as surface event rejection, can be applied to
100 mm diameter crystals

@ The first 100 mm iZIP looks like a good detector and is currently
undergoing detector characterisation tests

@ Several 100 mm iZIP detectors in the pipeline
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