Dark Matter Search Results from the COUPP 4kg Bubble Chamber at SNOLAB

Michael B. Crisler

Fermi National Accelerator Laboratory

COUPP Collaboration

M. Ardid¹, E. Behnke², T. Benjamin², M. Bou-Cabo¹, S.J. Brice³, D. Broemmelsiek³, J.I. Collar⁴, P.S. Cooper³, M. Crisler³, C.E. Dahl⁵, E. Grace², J. Hall³, C. Harnish², I. Levine², W.H. Lippincott³, D. Maurya⁶, T. Nania², R. Neilson⁴, S. Priya⁶, E. Ramberg³, A.E. Robinson⁴, A. Sonnenschein³, and E. Vázguez Jáuregui⁷

¹Politecnica Valencia ²Indiana University South Bend ³Fermi National Accelerator Laboratory ⁴KICP - University of Chicago ⁵Northwestern University ⁶Virginia Tech ⁷SNOLAB

THE 🧱 KAVLI FOUNDATION

The Physics of Bubble Nucleation

- Energy from particle interactions produces "proto-bubbles"
- Macroscopic bubbles arise from proto-bubbles with radius r > r_c
- The energy threshold E_{th} is the energy required to produce a critical radius bubble
- Bubble nucleation requires E_R > E_{th} and recoil path length < R_c

The Physics of Bubble Nucleation

- Tune Temperature T and Pressure P for set nuclear recoil threshold.
- No sensitivity to electron recoils

The Bubble Chamber is a Threshold Device

...so bubbles initiated by recoiling α -decay daughters are counted along with dark matter candidate events.

The Physics of Bubble Growth

PICASSO (Aubin et al., arXiv:0807.1536)

- Sound emission from a bubble peaks at r_{bubble} ~ 10 um
- Clear acoustic signature for a single nuclear recoil
- α -decay results in separate nucleation sites ~ 40 μ m

The Bubble Chamber

- 150 mm diameter fused silica jar
- Closed by a flexible stainless steel pressure balancing bellows
- Instrumented with
 - □ Temperature, Pressure Transducers
 - □ Fast Transient Pressure Transducer
 - Piezo Electric Acoustic Transducers
- Immersed in hydraulic fluid within a stainless steel pressure vessel
- Hydraulic pressure controls the superheated fluid pressure
- Viewed by machine vision cameras

The Bubble Chamber

Spin-indep

- Superheated CF₃ target Spin-dep
- Particle interactions nucleate bubbles
- Cameras capture bubbles
- Data Logged, Chamber compressed after each event

Propylene Glycol

Bubble Chamber Operation Cycle

The Data

 10 frames of Stereo Camera Images

- Synchronized measurements of P, T, and control parameters
- 2.5 Mhz waveform digitizer for acoustics and fast pressure transducer.

Acoustic Parameter

- (Amp ω)²
 (Normalized and position-corrected for each freq-bin)
- Measure of acoustic energy deposited in chamber
- Alphas are louder than neutrons

Dark Matter Bubble Chambers

- Insensitive to γ and β backgrounds
- Threshold device, integral distribution
- Event-by-event tagging of α -recoils
- Only background should be neutrons

COUPP 4kg @ SNOLAB

26 July 2012

M.B. Crisler IDM 2012

16

Neutron Sources Internal to the Apparatus

Piezoelectric elements

- ceramic PZT(Lead zirconate titanate)
- 4.0 ppm ²³⁸U 1.9 ppm ²³²Th plus lots of modern lead with ²¹⁰Pb
- Both fission and (α, n) on light elements
- Accounts for ~2 background singles

Camera Viewports

- Proprietary formulation, probably soda-lime glass
- 0.5 ppm ²³⁸U 0.8 ppm ²³²Th
- (α,n) on light elements
- Accounts for ~5 background singles

A New Background?

26 July 2012

M.B. Crisler IDM 2012

A New Background?

Threshold and Efficiency: SRIM simulation

Which recoils cause problems...

M.B. Crisler IDM 2012

Infer lodine recoil effciency from 222Rn chain:

- ΔT Analysis shows:
 - 95+-5% radon
 - 100% nucleation efficiency
 - A event population consists of
 - ²²²Rn 101 keV
 - ²¹⁸Po 112 keV
 - ²¹⁴Po 146 keV
- Threshold Scan shows:
 - Correct Seitz Model Thresholds
 - ²²²Rn nucleation efficiency is
 >75% (90% CL) at 100 keV
- Iodine Recoils should be similar
- NEEDS EXPLICIT CONFIRMATION

Neutron Calibration Results

- Treat ¹²⁷I recoils according to the Seitz Model
- Assume functional form for ¹⁹F and ¹²C recoils
 - "flat model" = step function at Seitz threshold, finite efficiency η_{C,F}
 - □ "PICASSO MODEL"
 - $\square P(E_R, E_T) = 1 \exp(-\alpha_{C, F}(E_R E_T)/E_T)$
- Both Models Fit:
 - $\hfill \eta_{C,F}$ = 0.49, $\hfill \alpha_{C,F}$ = 0.15
- ...but predict very different behavior near threshold.
- NEW CALIBRATION TECHNIQUE NEEDED

Spin-Independent Limits ($_{2}$ m) 10⁻⁴⁰ ($_{2}$ m) 10⁻⁴¹ ($_{2}$ m) 10⁻⁴¹ ($_{2}$ m) 10⁻⁴² ($_{2}$ m) 10⁻⁴³ ($_{2}$ m) 10⁻⁴⁴ ($_{2}$ m) 10⁻⁴⁵ ($_{2}$ m) 1 10⁻⁴⁰⊢ http://dmtools.brown.ed Gaitskell,Mandic,Filipp COUPP (Jan. 2011 10⁻⁴¹⊦ CDMS (SUF) COUPP (this result) 10⁻⁴² XENON10 10⁻⁴³ ENON100 CDMS 10⁻⁴⁴ cMSSM 10² WIMP Mass (GeV) **10**¹ 10³

Spin-Dependent Limits

M.B. Crisler IDM 2012

Summary

Spin-Independent

- We're on the map. But our lodine threshold understanding is indirect.
- New result coming on lodine threshold. See Hugh Lippincott's talk on tagged iodine recoils via pion elastic scattering.

Spin-Dependent

- □ Good results, in spite of poor ¹⁹F nucleation
- Better understanding coming... See Alan Robinson's talk in this session on our NEW Y-Be calibration technique.

Future

COUPP-4.1 New SNOLAB Running

Low background piezos, low background viewport

- Improved CF3I purity, Improved Cleaning
- New results later this year
- COUPP-60 installation in progress at SNOLAB.

□ See Andrew Sonnenschein's talk in this session

COUPP-500 engineering design in progress

□ See Eric Vazquez-Jauregui's talk this session