

Technische Universität München

CLOSING IN ON MASS-DEGENERATE DARK MATTER SCENARIOS

Miguel Pato

Physik-Department, Technische Universität München

in collaboration with Mathias Garny, Alejandro Ibarra and Stefan Vogl arXiv:1207.1431

IDM 2012, Chicago, July 27th 2012

1. CONTEXT: THE QUEST FOR WIMPS

long-awaited data are being collected as we speak...

complementarity is key for wimp identification

MIGUEL PATO (TU MUNICH)

1. CONTEXT: THE QUEST FOR WIMPS

before:

... a data-starved field experiments lagged far behind predictions

1. CONTEXT: THE QUEST FOR WIMPS

now:

... carving into theoretical models "moment of truth for wimps" [Bertone '10]

1. COMPLEMENTARITY IN WIMP SEARCHES

the idea

1. COMPLEMENTARITY IN WIMP SEARCHES

the idea

the complications

- 1. model-dependence
- 2. uncertainties

MIGUEL PATO (TU MUNICH)

1. COMPLEMENTARITY IN WIMP SEARCHES

our approach [Garny+ '12, arXiv:1207.1431]

focus on mass-degenerate dark matter scenarios $m_\eta\gtrsim m_\chi$

- .. enhanced direct and antiproton signals as $m_\eta o m_\chi$
- .. this is precisely the regime that escapes detection at colliders!

fold in all uncertainties

direct searches - antiprotons - collider searches

MIGUEL PATO (TU MUNICH)

2. THE MODEL

minimal extension of the standard model [Garny+ '12, arXiv:1207.1431] extra: Majorana fermion χ (WIMP DM), scalar η interaction: $\mathcal{L}_{int} = -f\bar{\chi}\Psi_R\eta + h.c.$ coupling scheme: light quarks + fiducial $\chi\chi \rightarrow b\bar{b}$ $\Psi = (u, d, s, uds, b)$

our parameter space

DM mass m_{χ} - mass splitting m_{η}/m_{χ} - coupling f

thermal freeze-out

mass degeneracy \rightarrow coannihilations $(\chi \eta \rightarrow qg, \eta \bar{\eta} \rightarrow gg, \eta \eta \rightarrow qq)$ use micromegas to compute $f_{thermal}$ corresponding to 7-yr WMAP Ω_{dm} $\sigma v(\eta \bar{\eta} \rightarrow gg) \propto g_s^4/m_\eta^2$, so sizable even for $f \sim 0!$ thermal WIMPs $\rightarrow m_\chi \gtrsim 200 (1000)$ GeV for $m_\eta/m_\chi = 1.1 (1.01)$

3. ANTIPROTONS

solar modulation $\phi_F = 500$ MV

arxiv:1207.1431

MIGUEL PATO (TU MUNICH)

3. ANTIPROTONS

on-site production [Garny+ '12, arXiv:1207.1431] lowest order: $\chi\chi \to q \bar{q}$ s-wave helicity-suppressed ($\propto m_q^2$) p-wave velocity-suppressed ($v/c \sim 1/1000$) $2 \to 3$ processes: $\chi\chi \to q \bar{q} \gamma \quad \chi\chi \to q \bar{q} g \quad \chi\chi \to q \bar{q} Z$ strongly enhanced when $m_\eta \to m_\chi$ formalism & uncertainties

3. ANTIPROTONS

on-site production

[Garny+ '12, arXiv:1207.1431]

lowest order:
$$\chi\chi o q\, ar q$$

s-wave helicity-suppressed ($\propto m_q^2$)
p-wave velocity-suppressed ($v/c \sim 1/1000$)

formalism & uncertainties

source term: <u>NFW - Einasto - isothermal</u> profiles fix $\rho_0 = 0.4 \text{ GeV/cm}^3$

propagation: semi-analytical two-zone diffusion model (L, δ, K_0, V_c) MIN – MED – MAX

experimental data

draw 95% CL upper limit on f (given m_{χ} , m_{η}/m_{χ})

MIGUEL PATO (TU MUNICH

ARXIV:1207.1431

in the framework of our minimal model... [Garny+ '12, arXiv:1207.1431]

spin-dependent

$$a_p = \sum_{q=u,d,s} rac{d_q}{\sqrt{2}\,G_F} \Delta q^{(p)} \qquad d_q = rac{1}{8} rac{f^2}{m_\eta^2 - (m_\chi + m_q)^2}$$

spin-independent

$$\begin{aligned} \frac{f_p}{m_p} &= -\frac{m_\chi}{2} \sum_{q=u,d,s} f_{T_q}^{(p)} g_q - \frac{8\pi}{9} b f_{TG}^{(p)} - \frac{3}{2} m_\chi \sum_{q=u,d,s,b} g_q \left(q^{(p)}(2) + \bar{q}^{(p)}(2) \right) \\ g_q &= -\frac{1}{8} \frac{f^2}{\left(m_\eta^2 - (m_\chi + m_q)^2 \right)^2} \qquad b = \left(B_S - \frac{m_\chi}{2} B_{2S} - \frac{m_\chi^2}{4} B_{1S} \right) \propto f^2 \end{aligned}$$

mass degeneracy

 $d_q, \ g_q$ resonate at $m_\eta = m_\chi + m_q \rightarrow$ enhanced SD, SI signals [Hisano+ '11] not too close to resonance: $m_\eta - m_\chi > 1$ GeV, $(m_\eta - m_\chi) \geq 2m_q$

MIGUEL PATO (TU MUNICH)

uncertainties [Garny+ '12, arXiv:1207.1431] astrophysics $\rho_0 = 0.4 \text{ GeV/cm}^3$, $v_0 = 230 \pm 30 \text{ km/s}$, $v_{esc} = 544 \text{ km/s}$ nuclear physics $\Delta s^{(p)} = -0.09 \pm 0.03$, $\Sigma_{\pi n} = 64 \pm 8 \text{ MeV}$, $\sigma_0 = 36 \pm 7 \text{ MeV}$, $q(2) \pm 15\%$

$$\begin{aligned} \frac{dR}{dE_R} &= \frac{1}{m_N} \int_{v_{min}}^{\infty} d^3 \vec{v} \, \frac{\rho_0 \, v}{m_\chi} f(\vec{v} + \vec{v}_e) \frac{d\sigma_{\chi - N}}{dE_R} \end{aligned} \\ a_p &= \sum_{q=u,d,s} \frac{d_q}{\sqrt{2} \, G_F} \Delta \, q^{(p)} \\ \frac{f_p}{m_p} &= -\frac{m_\chi}{2} \, \sum_{q=u,d,s} f_{T_q}^{(p)} g_q - \frac{8\pi}{9} b f_{TG}^{(p)} - \frac{3}{2} m_\chi \, \sum_{q=u,d,s,b} g_q \left(q^{(p)}(2) + \bar{q}^{(p)}(2) \right) \end{aligned}$$

MIGUEL PATO (TU MUNICH)

uncertainties [Garny+ '12, arXiv:1207.1431] astrophysics $\rho_0 = 0.4 \text{ GeV/cm}^3$, $v_0 = 230 \pm 30 \text{ km/s}$, $v_{esc} = 544 \text{ km/s}$ nuclear physics $\Delta s^{(p)} = -0.09 \pm 0.03$, $\Sigma_{\pi n} = 64 \pm 8 \text{ MeV}$, $\sigma_0 = 36 \pm 7 \text{ MeV}$, $q(2) \pm 15\%$ experimental data

 $\underline{\mathrm{Xenon100}}$ - best published SI limit exposure of 1471 kg.day $E_R = 8.4 - 44.6 \text{ keV}$ $N_{obs} = 3$, $N_{bkg} = 1.8$ Feldman-Cousins 95%CL $N_R \leq 6.45$ (new limit 3.5 times better)

uncertainties [Garny+ '12, arXiv:1207.1431] astrophysics $\rho_0 = 0.4 \text{ GeV/cm}^3$, $v_0 = 230 \pm 30 \text{ km/s}$, $v_{esc} = 544 \text{ km/s}$ nuclear physics $\Delta s^{(p)} = -0.09 \pm 0.03$, $\Sigma_{\pi n} = 64 \pm 8 \text{ MeV}$, $\sigma_0 = 36 \pm 7 \text{ MeV}$, $q(2) \pm 15\%$ experimental data 10⁻³⁴

<u>Xenon10</u> – best SD-n limit

exposure of 136 kg.day $E_R=4.5-27~{
m keV}$ $N_{obs}=10$, $N_{bkg}=0$ Feldman-Cousins 95%CL $N_R\leq 17.82$

MIGUEL PATO (TU MUNICH)

uncertainties [Garny+ '12, arXiv:1207.1431] astrophysics $\rho_0 = 0.4 \text{ GeV/cm}^3$, $v_0 = 230 \pm 30 \text{ km/s}$, $v_{esc} = 544 \text{ km/s}$ nuclear physics $\Delta s^{(p)} = -0.09 \pm 0.03$, $\Sigma_{\pi n} = 64 \pm 8 \text{ MeV}$, $\sigma_0 = 36 \pm 7 \text{ MeV}$, $q(2) \pm 15\%$ experimental data

uncertainties [Garny+ '12, arXiv:1207.1431] astrophysics $\rho_0 = 0.4 \text{ GeV/cm}^3$, $v_0 = 230 \pm 30 \text{ km/s}$, $v_{esc} = 544 \text{ km/s}$ nuclear physics $\Delta s^{(p)} = -0.09 \pm 0.03$, $\Sigma_{\pi n} = 64 \pm 8 \text{ MeV}$, $\sigma_0 = 36 \pm 7 \text{ MeV}$, $q(2) \pm 15\%$

experimental data

 $\underline{\text{COUPP}}$ – within best SD-p limits

high-threshold run exposure of 394.0 kg.day (×79.1%) $E_R = 15.5 - 100 \text{ keV}$ $N_{obs} = 8$, $N_{bkg} = 0$ Feldman-Cousins 95%CL $N_R \leq 15.29$

our parameter space

DM mass m_{χ} - mass splitting m_{η}/m_{χ} - coupling f

loose notes

[Garny+ '12, arXiv:1207.1431]

signals go as f^4 ! Xenon100 dominates direct detection limits (for our models) taking bino couplings, exclusion at $m_\chi \lesssim 215~{
m GeV}$

our parameter space

DM mass m_{χ} - mass splitting m_{η}/m_{χ} - coupling f

loose notes

[Garny+ '12, arXiv:1207.1431]

signals go as f^4 ! Xenon100 dominates direct detection limits (for our models) taking bino couplings, exclusion at $m_\chi \lesssim 215~{
m GeV}$

our parameter space

DM mass m_{χ} - mass splitting m_{η}/m_{χ} - coupling f

loose notes

[Garny+ '12, arXiv:1207.1431]

signals go as f^4 ! Xenon100 dominates direct detection limits (for our models) taking bino couplings, exclusion at $m_\chi \lesssim 215~{
m GeV}$

our parameter space

DM mass m_{χ} - mass splitting m_{η}/m_{χ} - coupling f

loose notes

[Garny+ '12, arXiv:1207.1431]

signals go as f^4 ! Xenon100 dominates direct detection limits (for our models) taking bino couplings, exclusion at $m_\chi \lesssim 215~{
m GeV}$

MIGUEL PATO (TU MUNICH)

our parameter space

DM mass m_{χ} - mass splitting m_{η}/m_{χ} - coupling f

loose notes

[Garny+ '12, arXiv:1207.1431]

signals go as f^4 ! Xenon100 dominates direct detection limits (for our models) taking bino couplings, exclusion at $m_\chi \lesssim 215~{
m GeV}$

MIGUEL PATO (TU MUNICH)

5. RESULTS: MASS DEGENERACY

[Garny+ '12, arXiv:1207.1431]

 $\overline{\mathrm{mass}}$ degeneracy $m_\chi \leftarrow m_\eta$

both direct detection and antiprotons enhanced as $m_\eta \to m_\chi$ but: enhancement much stronger in direct detection direct detection takes the lead over antiprotons for $m_\chi \lesssim$ few TeV (thermal relic cut-off due to $\sigma v(\eta \bar{\eta} \to gg) \propto g_s^4/m_\eta^2$)

MIGUEL PATO (TU MUNICH)

5. RESULTS: DOMINANT CONSTRAINT?

[Garny+ '12, arXiv:1207.1431]

(note: not an exclusion plot!) antiprotons constraints kick in only for $f\gtrsim 10$

MIGUEL PATO (TU MUNICH)

MIGUEL PATO (TU MUNICH)

ARXIV:1207.1431

5. RESULTS: USER-FRIENDLY PLOTS

[Garny+ '12, arXiv:1207.1431]

note: translation *is* model-dependent again, antiprotons kick in at high masses where $f\gtrsim 10$

MIGUEL PATO (TU MUNICH)

5. RESULTS: USER-FRIENDLY PLOTS

[Garny+ '12, arXiv:1207.1431]

note: translation *is* model-dependent again, antiprotons kick in at high masses where $f\gtrsim 10$

MIGUEL PATO (TU MUNICH)

ARXIV:1207.1431

5. RESULTS: COMPLEMENTARITY AT ITS BEST

5. RESULTS: COMPLEMENTARITY AT ITS BEST

5. RESULTS: COMPLEMENTARITY AT ITS BEST

5. RESULTS: COMPLEMENTARITY AT ITS BEST

5. RESULTS: COMPLEMENTARITY AT ITS BEST

5. RESULTS: COMPLEMENTARITY AT ITS BEST

5. RESULTS: COMPLEMENTARITY AT ITS BEST

direct searches exclude low splittings, colliders probe high splittings direct-collider complementarity looking good!

5. RESULTS: COMPLEMENTARITY AT ITS BEST

direct searches exclude low splittings, colliders probe high splittings direct-collider complementarity looking good!

two numbers, one disclaimer

Xe100 excludes splittings $\leq 19 \ (2)\%$ at $m_{\chi} = 300 \ (1000)$ GeV (f = 1)Xe1T shall exclude $\leq 114 \ (10)\%$ at $m_{\chi} = 300 \ (1000)$ GeV (f = 1)

MIGUEL PATO (TU MUNICH)

5. RESULTS: COMPLEMENTARITY AT ITS BEST

direct searches exclude low splittings, colliders probe high splittings direct-collider complementarity looking good!

two numbers, one disclaimer

Xe100 excludes splittings \lesssim 19 (2)% at m_{χ} = 300 (1000) GeV (f = 1) Xe1T shall exclude \lesssim 114 (10)% at m_{χ} = 300 (1000) GeV (f = 1)

to be fair, collider searches don't depend on f MIGUEL PATO (TU MUNICH)

6. CONCLUSION

- .. mass degeneracy enhances direct and indirect signals
- .. antiproton constraints lag behind direct searches
- .. complementarity antiprotons-direct-collider looks promising
- .. closing in on degenerate setups is feasible within next few years

MIGUEL PATO (TU MUNICH)

5. RESULTS: USER-FRIENDLY PLOTS

[Garny+ '12, arXiv:1207.1431]

note: translation *is* model-dependent again, antiprotons kick in at high masses where $f\gtrsim 10$

MIGUEL PATO (TU MUNICH)

5. RESULTS: USER-FRIENDLY PLOTS

[Garny+ '12, arXiv:1207.1431]

note: translation *is* model-dependent again, antiprotons kick in at high masses where $f\gtrsim 10$

MIGUEL PATO (TU MUNICH)

ARXIV:1207.1431