Background model for a Nal(TI) detector in the frame of the ANAIS experiment

Universidad de Zaragoza

aboratorio Subterráneo de Canfranc

(On behalf of the ANAIS Collaboration)

María Luisa Sarsa Sarsa

OUTLINE

• Brief Introduction and Present Status of the ANAIS Experiment

• Filtering of low energy events

• BACKGROUND MODEL FOR THE ANAIS-0 PROTOTYPE

CONCLUSIONS AND PROSPECTS

The ANAIS Experiment

to cm neutron shielding anti-Rin box 2 mm Cd Vibration isolator

250 kg of ultrapure Nal(TI) detectors at Canfranc Underground Lab.

Goal: study the annual modulation in the dark matter signal

SAME TARGET AND TECHNIQUE AS DAMA/LIBRA

The ANAIS Experiment

Long effort in R+D at the University of Zaragoza

HPGe radiopurity test bench for material selection
 PMT Testing
 Background understanding
 Optimization of data analysis and readout

New radiopure Nal(TI) crystals

- HPGe spectrometry screening of K content in Nal powder from different providers.
- Two 12.5 kg cylindrical crystals have been grown by AS with the best raw powder and are being encapsulated.
 - They should be received this summer for final background
 - assessment at LSC. We require no more than 0.02 ppm Potassium.

New radiopure Nal(TI) crystals

EVERYTHING AT LSC IS READY FOR THE MOUNTING

At the Canfranc Underground Laboratory – HALL B

Lead and polyethylene ready for the shielding of ANAIS

Access to ANAIS control room

ANAIS control room

Removable walls allow for convenient access to the experimental space

At the Canfranc Underground Laboratory – SHIELDING of ANAIS-0

- 10 cm archaeological lead
- 20 cm low activity lead
- Tightly closed box kept with boil-off
 nitrogen overpressure
- Three plastic scintillators as muon vetoes

ANAIS-0 Prototype

ANAIS-0 module consists of a 9,6 kg Nal(TI) made by Saint Gobain 4"x4"x10" Encapsulated at the UZ using ETP Copper

Choice of using LG and test different PMTs

.

ANAIS-ELECTRONIC CHAIN

ALMOST FULLY COMMISSIONED

BUS VME/NIM LINUX-ROOT

.

GATE

12

		PMT Testing		
HP Ge spe at Canfrar	ectrometry	Ham LB	Ham ULB	Ham VLB
	Model	⁴⁰ K (mBq/PMT)	^{232T} h (mBq/PMT)	²³²⁸ U (mBq/PMT)
- P -	HAM - R6233-100 HAM-LB	678 ± 42	68 ± 3	100 ± 3
	HAM - R11065SEL	12 ± 7	3.6 ± 1.2	²³⁸ U: 47 ± 28
	HAM-ULB			²²⁶ Ra: 8.0 ± 1.2
	HAM - R6956MOD	97± 18	20 ± 2	²³⁸ U: 128 ± 38
The second secon	HAM-VLB			²²⁶ Ra: 84 ± 3
Participantes .	M.L. Sarsa	, IDM 2012		13

PMT Testing

We would like to avoid LG ...

Direct measurement in ANAIS-0 prototype

Ham ULB Ham VLB

PMT Testing

Ham VLB

We would like to avoid LG ...

We need FILTER events below 20 keV (no electronic noise)

Rely on SIMULATIONS

Ham ULB

We want to select real bulk Nal scintillation events

CUTS have been developed for:

 Periods of high rate (f.i. periods after calibrations or electronically noisy)
 Events coincident with a muon on plastic vetoes.
 Events after a muon (Very High Energy event) in the Nal crystal in a 0.5 s-window.

4. Events having in total no more than 4 photoelectrons (n0s≤4 p.e.)

5. Anomalous fast events

Muon related events in ANAIS-0

We have studied events coincident with a VETO SIGNAL in the plastic scintillators (partially covering the shielding)

Muon related events in ANAIS-0

We have studied events coincident with a VETO SIGNAL in the plastic scintillators (partially covering the shielding)

Events at low energy coincident with a veto signal are present in our data and scintillation in the LG is confirmed

Muon related events in the crystal

High energy depositions excite very slow scintillation component in NaI(TI), producing a strong increase in rate after each muon event (very low energy events):

19

Determination of the very slow scintillation time constants

We have determined in a precise way the time constants of the Nal(TI) phosphorescence

M.L. Sarsa, IDM 2012

Very difficult to measure at sea level

We count the total number of photoelectrons in every low energy event

We count the total number of photoelectrons in every low energy event

We filter the fast anomalous event population

We filter the fast anomalous event population

M.L. Sarsa, IDM 2012

We filter the fast anomalous event population

We have built a background model for the ANAIS-0 module, based on radiopurity input data for the different detector and shielding components + Géant 4 code

NaI crystal bulk activity		
mBq/kg		
12.7 ± 0.5		
0.96 ± 0.06		
0.075 ± 0.005		
0.023 ± 0.007		
0.098 ± 0.004		
0.188 ± 0.005		
0.013 ± 0.005		
0.035 ± 0.003		

Background contribution from bulk crystal contaminations

Simulated component	Isotope	e Activity	
	⁴⁰ K	< 11 mBq	
	²³² Th	< 4.1 mBq	
Copper encapsulation	²³⁸ U	< 140 mBq	
	226 Ra	< 2 mBq	
	⁶⁰ Co	< 0.94 mBq	
	⁴⁰ K	< 12 mBq/kg	
	232 Th	< 2.2 mBq/kg	
Quartz optical window	²³⁸ U	< 100 mBq/kg	
	226 Ra	< 1.9 mBq/kg	
Tillerile	⁴⁰ K	< 21 mBq/guide	
	²³² Th	< 4.1 mBq/guide	
Light guides	²³⁸ U	< 120 mBq/guide	
	226 Ra	< 4.7 mBq/guide	
	⁴⁰ K	< 200 mBq/kg	
Optical coupling grease	²³² Th	< 200 mBq/kg	
	²³⁸ U	$< 2000 \mathrm{~mBq/kg}$	
	226 Ra	< 30 mBq/kg	
	²¹⁰ Pb	< 20 mBq/kg	
Archaeological Lead	232 Th	< 0.3 mBq/kg	
	²³⁸ U	< 0.2 mBq/kg	
Inner volume air	222 Rn	$< 0.6 \ \mathrm{Bq/m^3}$	
	1		

Rn

nd model for the ANAIS-0 module, based on data for the different detector and shielding

Background contribution from other detector components, shielding and

components

We have built a background model for the ANAIS-0 module, based on radiopurity input data for the different detector and shielding components

TO APPEAR IN Astroparticle Physics

M.L. Sarsa, IDM 2012

Introducing some small modifications: reducing some contaminations below the upper limits, adding some surface components, ...

Simulated	Background contribution			
component	150 - 3000 keV			
	counts/kg/day	%		
Crystal	1000.2 (1002.7)	77.5 (77.7)		
Copper encapsulation	67.8 (47.5)	5.3 (3.7)		
Quartz window	13.5(6.6)	1.0(0.5)		
Optical coupling grease	21.4 (7.2)	1.7(0.6)		
Ham ULB PMT	47.2	3.7		
Lead shielding	36.0 (145.0)	2.8 (11.2)		
Inner volume air	9.1	0.7		
Total	1195.2 (1265.3)	92.6 (98.1)		

Table 6

Contribution to the background of ANAIS-0 module in set-up 4 from the different simulated set-up components: total rate derived from simulation from 150 keV to 3000 keV and corresponding percentage of the measured background. Rates and percentages shown in parentheses correspond to the simulation including extra hypotheses (see text).

TO APPEAR IN Astroparticle Physics

Simulated	Background contribution				
component	5 - 150 keV		2 - 20 keV		
	counts/kg/day	%	counts/kg/day	%	
Crystal	196.0 (255.0)	53.0 (68.8)	49.6 (65.0)	64.8 (84.8)	
Copper encapsulation	46.1 (31.4)	12.5(8.5)	1.4 (8.0)	1.8(10.5)	
Quartz window	15.5(2.5)	4.2 (0.7)	1.8 (0.2)	2.4(0.3)	
Optical coupling grease	15.7 (3.3)	4.2 (0.9)	5.8 (0.9)	7.6 (1.2)	
Ham ULB PMT	15.4	4.2	0.5	0.7	
Lead shielding	3.2 (33.7)	0.9 (9.1)	0.3 (1.3)	0.3(1.8)	
Inner volume air	1.2	0.3	0.1	0.1	
Total	293.2 (342.1)	79.3 (92.5)	59.5 (76.0)	77.7 (99.3)	

Table 7

Contribution to the background of ANAIS-0 module in set-up 4 from the different simulated set-up components: total rate derived from simulation from 5 keV to 150 keV and corresponding percentage of the measured background, total rate derived from simulation from 2 keV to 20 keV and corresponding percentage of the measured background. Rates and percentages shown in parentheses correspond to the simulation including extra hypotheses (see text).

TO APPEAR IN Astroparticle Physics

Background model for the new crystals

Applying the same background model, assuming the only improvement is the ⁴⁰K reduction down to 20 ppb level:

And without profit from coincidence between modules rejection factor ...

Conclusions and Prospects

- Radiopure Nal powder (<90 ppb potassium) has been found and two 12.5 kg prototypes are almost ready to final background asessment at LSC
- If potassium content is below 20 ppb, 250 kg Nal (20 x 12,5 kg) will be mounted at LSC along 2013
- Electronic chain and readout is almost ready and the lead and polyethylene for the shielding are at LSC waiting to be mounted
- We understand quite well our present backgrounds: simulations and filtering protocols seem to work well