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REFRESHER: THE LUX EXPERIMENT

Two-phase Xenon TPC direct detector for
collecting primary and secondary scintillation

Total mass of 350* kg (100 kg est. fiducial mass)

Completed a successful surface engineering run
in February of this year in Lead, SD

Detector just moved underground a few weeks
ago to the -4850 ft. level at Sanford Lab

Please see Karen Gibson’s (plenary) and Carmen
Carmona’s talks for more information



SURFACE CALIBRATIONS

Several unique sources purposefully employed or
capitalized on, both internally and externally

Cs-137 662 keV gamma rays

Rn-222 chain alphas (5.5, 6.0, and 7.7 MeV)
Xe activation lines at 164 and 236 keV
Muons with O(5 GeV) mean energy

Both zero and non-zero electric field data taken

Fields kept low to avoid PMT saturation with
electroluminescence from muons

Gains kept low for the same reason

Data presented here are not the best LUX will be
able to take (yet are already good...)



LIGHT COLLECTION PARAMETERS

Based on the data presented in this talk, we have
the following preliminary results:

>95% reflective PTFE in LXe lower limit, with the
best fit to the data occurring for 100 (+0 -2)%

>5 m photon absorption length in LXe lower limit,
with the best fit at 11 (+2 -1)m

One model 1s able to explain the data, consisting
of different particles and energy ranges



CESIUM-137 GAMMA RAYS
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Simulation described in Akerib et al., "LUXSim: A component-centric approach to low-background
simulations", Nuclear Instruments and Methods in Physics Research A (675) (2012) p.63-77.
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XENON ACTIVATION LINES

Natural Xe gets e
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activated and 2500
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CONSEQUENCES

The high light yield of LUX bodes well for the
dark matter result to be achieved underground,
especially in terms of low-mass WIMPs

We present limit projections here with differing
assumptions, based on the surface data
15% and 20% overall photon collection efficiencies,

the former realistic and conservative, and the latter
optimistic but still realistic, and 30,000 kg-days

50% nuclear recoil acceptance window for log(S2/S1)
(60% for the optimistic case) and 1 kV/ecm field

A WIMP search window of 3 phe (3.4 keVnr
optimistic and 4.3 keVnr conservative) to 30/40 phe
(held fixed at ~25 keVnr in each case)
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We do not allow
below-threshold
fluctuations,
effectively setting
the scintillation

efficiency to zero
below the LUX
threshold

With this method
we do not rely on
understanding
the efficiency
below where data
exists (3 keVnr)

In the optimistic
scenario, we
exclude most of
the CoGeNT
region, but in a
less controversial
fashion perhaps



LIMIT PROJECTIONS
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XENON100 WIMP limit, light yield, and threshold from Aprile,
Dark Attack 2012 and/or Melgarejo, IDM 2012

We can do a similar
analysis (“sub-
threshold”) to that of
XENON100’s but with
a model (NEST)
instead of an

extrapolation (neither
are shown here)

We then have full
sensitivity in the
region favored by the
CoGeNT experiment,
but given the large
low-E theoretical
uncertainties, hard to
go low until there is

data (at field)

We take an average
light collection,
1ignoring the known
improvement near the

bottom PMT's



NEST (NOBLE ELEMENT SIMULATION
TECHNIQUE)

Szydagiset al., NEST: A Comprehensive Model for Scintillation Yield in Liquid
Xenon, 2011 JINST 6 P10002; e-Print: arxiv:1106.1613 [physics.ins-det]

Uses the Hitachi
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electrons per keV

CHARGE YIELD (Qy) MODEL
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P. Sorensen et al., Lowering the low-energy threshold of xenon detectors, PoS (IDM2010)017 [arXiv:1011.6439].

Just an
1llustration

Not fit to the
data shown
(all from
XENON10),
but a post-
diction based
on fits to the
data from
previous slide

Excellent
description of
the latest
understanding
of the data
(green) in the
WIMP search

region



SUMMARY AND CONCLUSIONS

LUX has achieved a higher light yield than in
XENON100 (~6 phe/keVee at 122 keV, field-
adjusted for 500 V/em which is not necessarily the
LUX field, versus 2.28 phe/keVee¥), even without
completion of xenon purification

Consequently, LUX should be able to achieve a
nuclear recoil threshold significantly lower than
that of XENON100 (~3-4 keVnr vs. ~6.6 keVnr*,
but note different assumptions) even with no
further improvement, with respect to the surface
run purity achievement

LUX may be able to exclude CoGeNT without
relying on L, extrapolation or modeling outside

of the energy range where data exists

*XENON100 WIMP limit, light yield, and threshold from Aprile, Dark Attack 2012 and/or Melgarejo, IDM 2012
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NEST WORKS!

Light yield (pe/keV)
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