Reactor Neutrino Experiments

Ed Blucher University of Chicago

- Motivation for current short-baseline reactor experiments: θ_{13}
- Production and detection of reactor neutrinos
- Experiments to search for θ_{13} : Double Chooz, RENO, Daya Bay
- Summary

Neutrino mixing and masses

Key questions in neutrino mixing

- •What is value of θ_{13} ?
- •What is mass hierarchy?
- •Do neutrino oscillations violate CP symmetry? $P(v_{\mu} \to v_{e}) - P(\bar{v}_{\mu} \to \bar{v}_{e}) = -16s_{12}c_{12}s_{13}c_{13}^{2}s_{23}c_{23}\sin\delta\sin\left(\frac{\Delta m_{12}^{2}}{4E}L\right)\sin\left(\frac{\Delta m_{13}^{2}}{4E}L\right)\sin\left(\frac{\Delta m_{23}^{2}}{4E}L\right)$
- •Why are quark and neutrino mixing matrices so different?

$$U_{MNSP} \sim \begin{pmatrix} Big & Big & Small ? \\ Big & Big & Big \\ Big & Big & Big \end{pmatrix} \quad \text{vs.} \quad V_{CKM} \sim \begin{pmatrix} 1 & Small & Small \\ Small & 1 & Small \\ Small & Small & 1 \end{pmatrix}$$

 \longrightarrow Value of θ_{13} central to these questions; it sets the scale for experiments needed to resolve mass hierarchy and search for CP violation.

Methods to measure $\sin^2 2\theta_{13}$

• Accelerators: Appearance $(v_{\mu} \rightarrow v_{e})$ at $\Delta m^{2} \sim 2.5 \times 10^{-3} \text{ eV}^{2}$

$$P(v_{\mu} \rightarrow v_{e}) = \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \sin^{2} \frac{\Delta m_{13}^{2} L}{4E} + \text{not small terms} (\delta_{CP}, sign(\Delta m_{13}^{2}))$$

NOvA: $\langle E_v \rangle = 2.3$ GeV, L = 810 km

T2K: $\langle E_v \rangle = 0.7$ GeV, L = 295 km

• Reactors: Disappearance $(\overline{v}_e \rightarrow \overline{v}_e)$ at $\Delta m^2 \sim 2.5 \times 10^{-3} \text{ eV}^2$ $P(\overline{v}_e \rightarrow \overline{v}_e) = 1 - \sin^2 2\theta_{13} \sin^2 \frac{\Delta m_{13}^2 L}{4E} + \text{ very small terms}$

Use reactors as a source of $\overline{v_e}$ ($\langle E_v \rangle \sim 3.5$ MeV) with a detector 1-2 kms away and look for non-1/r² behavior of the $\overline{v_e}$ rate

• Reactor experiments provide the only clean measurement of $\sin^2 2\theta_{13}$: no matter effects, no CP violation, almost no correlation with other parameters. **Reactors as Antineutrino Sources**

Reactors are copious, isotropic sources of \overline{V}_e .

 β^- decay of neutron rich fission fragments of U and Pu

Example: ²³⁵U fission

→ ~ 200 MeV/fission and ~6 $\bar{\nu}_e$ / fission implies that 3GW_{th} reactor produces ~ 6×10²⁰ $\bar{\nu}_e$ / sec.

To do this calculation correctly, one must consider 235 U, 238 U, 239 Pu, and 241 Pu, account for evolution of the reactor core over the fuel cycle, and consider all of the possible β branches.

Direct measurements of electron spectra from thin layers of ²³⁵U, ²³⁹Pu, and ²⁴¹Pu in a beam of thermal neutrons are used as constraints.

Detection of \overline{V}_e

Inverse β Decay: $\overline{V}_e + p \rightarrow e^+ + n$

~1 IBD event per day per ton of LS per GW thermal at 1 km

Experiments detect coincidence between prompt e⁺ and delayed neutron capture on hydrogen (or Cd, Gd, etc.)

Including E from e⁺ annihilation, $E_{prompt} = E_v - 0.8 \text{ MeV}$

9

Oscillation Experiments with Reactors

Antineutrinos from reactors can be used to study neutrino oscillations with "solar" $\Delta m_{12}^2 \sim 8 \times 10^{-5} \text{ eV}^2$ and "atmospheric" $\Delta m_{13}^2 \sim 2.5 \times 10^{-3} \text{ eV}^2$

Mean antineutrino energy is 3.6 MeV. Therefore, only disappearance experiments are possible.

$$P(\overline{\nu}_e \to \overline{\nu}_e) \approx 1 - \sin^2 2\theta_{13} \sin^2 \frac{\Delta m_{13}^2 L}{4E} - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \frac{\Delta m_{12}^2 L}{4E},$$

where $\Delta m_{ij}^2 = m_i^2 - m_j^2.$

Experiments look for non- $1/r^2$ behavior of antineutrino rate.

Oscillation maxima for $E_v = 3.6$ MeV: $\Delta m_{12}^2 \sim 8 \times 10^{-5} \text{ eV}^2 \implies L \sim 60 \text{ km}$ $\Delta m_{13}^2 \sim 2.5 \times 10^{-3} \text{ eV}^2 \implies L \sim 1.8 \text{ km}$

Neutrino Oscillation Searches at Nuclear Reactors

Reactor Neutrino Flux and the Reactor Antineutrino Anomoly

Th. A. Mueller et al.``Improved Predictions of Reactor Antineutrino Spectra," accepted for publication in Phys. Rev. C, 83 (2011) 054615; arXiv:1101.2663.

G. Mention et al., ``The Reactor Antineutrino Anomoly," Phys. Rev. D, 83 (2011) 073006; arXiv:1101.2755.

P. Huber, ``On the determination of anti-neutrino spectra from nuclear reactors; arXiv:1106.06874.

As part of preparation for Double Chooz analysis with a single far detector, Mueller et al. applied an improved procedure to go from measured ²³⁵U, ²³⁹Pu, and ²⁴¹Pu β^- spectra (at ILL) to neutrino spectra.

The result is a +3% increase in neutrino flux, on average.

Huber, using a different method to go from β^- to v spectra, finds a similar shift.

The shift could be a hint of a non-standard neutrino state with $\Delta m^2 > \sim 1 \text{ eV}^2$ and $\sin^2 2\theta \sim 0.1$.

Issues affecting oscillation experiments

- Knowledge of antineutrino flux and spectrum
- Detector acceptance
- Understanding of energy reconstruction
- Backgrounds:
 - Uncorrelated backgrounds from random coincidences
 - Reduced by limiting radioactive materials
 - Directly measured from rates and offset time coincidence windows
 - Correlated backgrounds
 - Neutrons that mimic the coincidence signal
 - Cosmogenically produced isotopes that decay to a beta and neutron: ⁹Li ($\tau_{1/2}$ =178 ms) and ⁸He ($\tau_{1/2}$ =119 ms); associated with showering muons.
 - Reduced by shielding (depth) and veto systems

Normalization and spectral information

Counting analysis: Compare number of events in near and far detector Systematic uncertainties:

- relative normalization of near and far detectors
- relatively insensitive to energy calibration

Energy spectrum analysis: Compare energy distribution in near and far detectors

Systematic uncertainties:

- energy scale and linearity
- insensitive to relative efficiency of detectors

Best θ_{13} Limit: Chooz Experiment

m = 5 tons, Gd-loaded liquid scintillator

How can one improve on Chooz Experiment?

- Add an identical near detector
 - Eliminate dependence on reactor flux; only relative acceptance of detectors needed
- Optimize baseline
- Larger detectors; improved detector design
- Higher power reactor sites
- Reduce backgrounds
 - Go deeper and use active veto systems
- Stable scintillator

New Multi-detector θ_{13} Reactor Experiments

Experiment	GW _{th}	Distance Near/Far (m)	Shielding Near/Far (mwe)	Target Mass (tons)	Sensitivity sin ² 2θ ₁₃ (90% c.l.)	Start of data taking
Double Chooz (France)	8.4	390/1050	115/300	8/8	0.03	April 2011 far det only; near in 2013
RENO (Korea)	17.3	290/1380	120/450	16/16	0.02	August 2011 Near+far
Daya Bay (China)	17.4	360(500)/ 1985(1615)	260/910	2×2×20 (N) 4×20 (F)	0.01	Dec 2011 Near (3)+far (3)

- Many similarities in detector design and analysis strategy
- Differences in sensitivity come mainly from statistics (mass, reactor power), baseline optimization, and multiple detectors (for Daya Bay) 19

Detectors and analysis strategy designed to minimize relative acceptance differences

Central zone with Gd-loaded scintillator surrounded by buffer regions; fiducial mass determined by volume of Gd-loaded scintillator Neutrino detection by $\overline{V}_e + p \rightarrow e^+ + n$,

n ^mGd \rightarrow ^{m+1}Gd γ s (8 MeV); τ =30 μ sec

Events selected based on coincidence of e⁺ signal (E_{vis} >0.5 MeV) and γ s released from n+Gd capture (E_{vis} >6 MeV).

No explicit requirement on reconstructed event position; little sensitivity to E requirements.

Events selected based on coincidence of e^+ signal (E_{vis} >0.5 MeV) and γ s released from n+Gd capture (E_{vis} >6 MeV).

Reconstructed e⁺ and n-capture energy

Double Chooz Experiment

Collaboration of ~150 physicists from France, Germany, Spain, Japan, U.K., Russia, Brazil, and U.S.

Double Chooz Detector Design

Double Chooz Far Detector Installation

Double Chooz Outer Veto (made in Chicago)

- Gamma sources (⁶⁸Ge, ¹³⁷Cs, ⁶⁰Co) and neutron source (²⁵²Cf) deployed along:
 - Vertical axis of target
 - Guide tube in the gamma catcher
- LED light injector (edge of buffer) and laser systems (vertical axis)
 - Speed of light in scintillator
 - PMT gains and time offsets
- Articulated arm in preparation
 - Will allow putting sources or LEDs anywhere in the target

RENO Experiment South Korea

6 reactors span ~1.3 km Total average thermal output ~16.4 GW_{th}

40 physicists from 13 South Korean institutions (1 U.S.)

RENO Layout

RENO Detector

- Inner PMTs: 342 10" PMTs
 - solid angle coverage = 12.6%
- Outer PMTs: ~ 60 10" PMTs

Target: 16 tons

RENO

Finishing PMT installation (2011.1)

RENO

Near and Far Detectors Closed at end of Jan 2011

Daya Bay Reactor Neutrino Experiment

6 reactor cores with 17.4 GW_{th}

Mountains provide up to 1000 mwe overburden.

250 physicists from Asia, Europe, and U.S.

Antineutrino Detectors

Three-zone cylindrical detector design

- Target: 20 t (0.1% Gd LAB-based LS)
- Gamma catcher: 20 t (LAB-based LS)
- Buffer : 40 t (mineral oil)
- Low-background 8" PMT: 192
- Reflectors at top and bottom

33

Calibration System of Antineutrino Detectors

gain and timing

3 Automatic calibration 'robots' (ACUs) on each detector

R=1.7725 m R=0 R=1.35m

ACU-A

ACU-B

ACU-C

Three axes: center, edge of target, middle of gamma catcher

3 sources for each z axis on a turntable (position accuracy < 5 mm):
10 Hz ⁶⁸Ge (2×0.511 MeV γ's)
0.5 Hz ²⁴¹Am-¹³C neutron source (3.5 MeV n without γ) + 100 Hz ⁶⁰Co gamma source (1.173+1.332 MeV γ)
LED diffuser ball (500 Hz) for PMT

Daya Bay Anti-neutrino Detector Assembly

Muon Veto Detectors: Water Cerenkov and RPCs

RPCs in Daya Bay Hall

Getting Ling Ao Near and Far Halls Ready

EH 2 (Ling Ao Near Hall): Began operation on 5 Nov 2011

EH 3 (Far Hall): Started data-taking on 24 Dec 2011

All three experiments announced first results during the last 6 months

Experiment	Date of 1 st Result	Live Days	Far Detector IBD candidates	Signal to background
Double Chooz	Nov 2011	101	4121	11
Daya Bay	March 2012	49	10416	19
RENO	April 2012	222	17102	17

Inverse β Decay Rate History

39

Double Chooz Results

From rate-only analysis: $\sin^2 2\theta_{13} = 0.104 \pm 0.030 \text{ (stat)} \pm 0.076 \text{ (syst)}$

Y. Abe et al., Phys. Rev. Lett. 108, 131801 (2012).

Double Chooz Systematic Errors on Absolute Normalization

Detector		Reactor	
Energy response	1.7%	Bugey4 measurement	1.4%
E_{delay} Containment	0.6%	Fuel Composition	0.9%
Gd Fraction	0.6%	Thermal Power	0.5%
Δt_{e^+n}	0.5%	Reference Spectra	0.5%
Spill in/out	0.4%	Energy per Fission	0.2%
Trigger Efficiency	0.4%	IBD Cross Section	0.2%
Target H	0.3%	Baseline	0.2%
Total	2.1~%	Total	1.8%

Double Chooz: Cross check of background estimate

- During 21.3 hours with both reactors off, observed 2 events (both consistent with ⁹Li)
- Background estimate from detailed studies: 3.3 ± 1.3 / day
- Estimate from fit to above plot (blue dashed line): 3.2 ± 1.3 / day

Daya Bay Results

From rate-only analysis: $\sin^2 2\theta_{13} = 0.092 \pm 0.016 \text{ (stat)} \pm 0.005 \text{ (syst)}$

F. P. An et al., Phys. Rev. Lett. 108, 171803 (2012)

Detector					
	Efficiency	Correlated	Uncorrelated		
Target Protons		0.47%	0.03%		
Flasher cut	99.98%	0.01%	0.01%		
Delayed energy cut	90.9%	0.6%	0.12%		
Prompt energy cut	99.88%	0.10%	0.01%		
Multiplicity cut		0.02%	$<\!0.01\%$		
Capture time cut	98.6%	0.12%	0.01%		
Gd capture ratio	83.8%	0.8%	$<\!0.1\%$		
Spill-in	105.0%	1.5%	0.02%		
Livetime	100.0%	0.002%	<0.01%		
Combined	78.8%	1.9%	0.2%		
Reactor					
Correlated	1	Uncorrelated			
Energy/fission	0.2%	Power	0.5%		
IBD reaction/fission	3%	Fission fraction	0.6%		
		Spent fuel	0.3%		
Combined	3%	Combined	0.8%		

Daya Bay Systematic Errors on Normalization

Daya Bay: Side-by-side comparison of two near detectors

RENO Results

From rate-only analysis: $\sin^2 2\theta_{13} = 0.113 \pm 0.013 \text{ (stat)} \pm 0.019 \text{ (syst)}$

J. K. Ahn et al., Phys. Rev. Lett. 108, 191802 (2012).

Reactor				
	Uncorrelated	Correlated		
Thermal power	0.5%	_		
Fission fraction	0.7%	—		
Fission reaction cross section	—	1.9%		
Reference energy spectra	_	0.5%		
Energy per fission	—	0.2%		
Combined	0.9%	2.0%		
Detection				
	Uncorrelated	Correlated		
IBD cross section	_	0.2%		
Target protons	0.1%	0.5%		
Prompt energy cut	0.01%	0.1%		
Flasher cut	0.01%	0.1%		
Gd capture ratio	0.1%	0.7%		
Delayed energy cut	0.1%	0.5%		
Time coincidence cut	0.01%	0.5%		
Spill-in	0.03%	1.0%		
Muon veto cut	0.02%	0.02%		
Multiplicity cut	0.04%	0.06%		
Combined (total)	0.2%	1.5%		

RENO Systematic Errors on Normalization

Summary of $sin^2 2\theta_{13}$ Results

Combination of precise reactor and accelerator experiments could give glimpse of CP violation

Summary

- Very exciting year for reactor experiments
- θ_{13} is non-zero and is relatively large. New results from all three experiments at Neutrino 2012. Uncertainty on $\sin^2 2\theta_{13}$ will soon be less than 10%.
- Non-zero θ_{13} opens the door to search for CP violation in neutrino oscillations.
- Near detectors of current experiments will provide measurements of reactor spectra with unprecedented precision. These measurements may help clarify reactor "anomoly"
- A measurement of few MeV neutrinos at very short baseline (< 10 m) would be very interesting.
- Ambitious new ideas for reactor experiments to address the mass hierarchy.