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the KARMEN and LSND cross section measurements for νe +12C →12 Ngs + e− exclude the best fit
point for the Gallium anomaly at 3.6σ. Thus, we do not put this anomaly on our motivation list.

The paper is organized as follows. In Section 2, we first review the basic formalism for neutrino
oscillations involving sterile neutrinos and the global best fits from the literature. Then we examine
the mini-seesaw mechanism and propose an effective theory that realizes the mini-seesaw naturally. A
minimal version of the mini-seesaw, in which the active neutrino masses are due entirely to mixing, is
especially predictive and is examined in detail. It strongly favors an inverted hierarchy (IH) but implies
a vanishing effective neutrinoless double beta decay mass mββ . It is shown that this minimal version
can accomodate the observed active neutrino mass differences and mixings and can successfully fit
the LSND and MiniBooNE data. We conclude the section by discussing the cosmological constraints
and possible ways to evade them. In Section 3, we discuss another possible scenario that may explain
the short baseline anomalies with one light and one heavy sterile neutrino. We comment on the
rather stringent cosmological and astrophysical constraints on this scenario and possible evasions. We
conclude in Section 4. Further details of the minimal mini-seesaw fit are given in the Appendix.

2 The Mini-Seesaw Mechanism

2.1 Global Fits

We first review the basic formalism for neutrino oscillations. Neglecting the masses in the active neu-
trino sector and assuming that only two sterile neutrinos participate in the oscillation, the probability
of electron neutrino appearance in a muon neutrino beam is

Pνµ→νe = 4|Ue4|2|Uµ4|2 sin2 x4 + 4|Ue5|2|Uµ5|2 sin2 x5

+8|Ue4||Uµ4||Ue5||Uµ5| sin x4 sin x5 cos(x5 − x4 − δ), (2.1)

where Uαi are the mixing matrix elements between active neutrinos να (α = e, µ) and steriles νi (i =
4, 5), and the phases xi are

xi ≡ 1.27
(

m2
i

eV2

) (
L/E

m/MeV

)
. (2.2)

In propagation through matter the phases may also be altered by forward scattering due to the weak
interactions and thus are also sensitive to E. The matter effects are generically small in short baseline
experiments unless exotic forces exist, which we will neglect in this paper. The physical CP-violating
angle is defined as

δ ≡ arg

(
Ue5U∗µ5

Ue4U∗µ4

)
. (2.3)

For anti-neutrino oscillations, one only needs to replace δ by −δ in Eq. 2.1.
As shown by [10] and [11], with the new reactor flux prediction, the global fit to all oscillation

data (based on 2010 MiniBooNE anti-neutrino data) improves considerably when the existence of two
light sterile neutrinos is assumed. The best fit points, given in Table 1, prefer two steriles with masses
of order 1 eV; the active-sterile mixing angles of order 0.1; and a non-zero CP violating phase δ in the
sterile sector.

2.2 Active-Sterile Neutrino Mixing

Most extensions of the standard model (SM) which allow nonzero neutrino mass3 involve sterile (i.e.,
SU(2)-singlet) neutrinos. Consider, for example, the case of three left-chiral active neutrinos ν0

L and
3For general reviews, see, e.g., [23–26].
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∆m2
41 ∆m2

51 |Ue4| |Ue5| |Uµ4| |Uµ5| δ/π χ2/dof
KMS 0.47 0.87 0.128 0.138 0.165 0.148 1.64 110.1/130
GL 0.90 1.60 0.13 0.13 0.13 0.08 1.52 91.6/100

Table 1. Best global fit points of KMS [10] and of GL [11]. (The GL result is obtained from parameter

goodness of fit where the number of degrees of freedom corresponds to the number of parameters in common

to the data sets. For more details, see [22].)

n left-chiral sterile antineutrinos N0c
L , and their respective CP conjugates ν0c

R and N0
R, where the

superscript 0 indicates weak eigenstate. In general, these will have a mass term

− L =
1
2

(
ν̄0

L N̄0c
L

) (
MT MD

MT
D MS

) (
ν0c

R

N0
R

)
, (2.4)

where MT = MT
T and MS = MT

S are 3×3 and n×n-dimensional symmetric Majorana mass matrices,
while MD is a 3×n-dimensional Dirac mass matrix. MT , MD, and MS violate weak isospin by 1, 1/2,
and 0 units, respectively. In the pure Majorana (MD = 0) and pure Dirac (MT = MS = 0) cases there
is no mixing between ν0

L and N0c
L (or between ν0c

R and N0
R). In the ordinary Type I seesaw model

(with the MS eigenvalues much larger than MD and MT , typically ! O(TeV)) there is mixing, but it
is very small. Moreover, the heavy, predominantly sterile, states decouple from the low energy theory.
Therefore, mixing between active and light sterile neutrinos of the same helicity, which could account
for the anomalies described in Section 1, requires the simultaneous presence of small Dirac mass terms
and small Majorana mass terms4 (see, e.g., [27]). We will therefore consider an effective low energy
theory in which all of the entries in (2.4) are very small (usually " O(eV)) after integrating out any
heavy states. Especially attractive is the mini-seesaw, which is similar to the ordinary seesaw except
that the eigenvalues of MS are in the eV range (and much larger than the elements of MD and MT ).
This typically leads to relations between the active-sterile mixings and the mass eigenvalues consistent
with the observations. For example, in the one-family version of (2.4), the 2× 2 mass matrix is

M =
(

mT mD

mD mS

)
.

Taking mT = 0 for simplicity and mS # mD, the physical masses of the predominantly active
and sterile states are m1 ∼ m2

D/mS and m2 ∼ mS , respectively, with an active-sterile mixing θ ∼
mD/mS ∼ (m1/m2)1/2. Thus, mD = O(0.1 eV) and mS = O(1 eV) implies m1 = O(0.01 eV) and
θ = O(0.1). The extension to several families and the roles of family mixing and MT are discussed
below.

2.3 Mini-Seesaw from Higher-Dimensional Operators

Barring fine-tuning, the small values of MD and MT,S needed for active-sterile mixing or for the mini-
seesaw most likely imply that they are suppressed by additional gauge, global, or discrete symmetries
compared to the simplest expectations. The remaining small elements may usually be described5

by higher-dimensional operators (HDO) involving powers of S/Λ, where S represents a SM singlet
4It could instead be due to two distinct kinds of small Dirac mass terms, such as one which links active and sterile

neutrinos, and another which links sterile left and right-chiral fields.
5Another possibility is that the mass terms are exponentially suppressed by nonpertubative effects, such as D-brane

instantons. For reviews, see [28, 29].
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3+2 scheme: ms < 0.45 eV at 95% C. L.  

However, ms ~ eV is not favored within ΛCDM; 
Besides, BBN requires: Ns < 1.26 at 95% C.L.  
Yet bounds weakened by allowing additional radiation, w < ‐1  

Hamann, Hannestad,  
Raffelt, Wong ’11 ; 

Hamann, Hannestad,  
Raffelt, Tamborra, Wong ’10 ; 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41 ∆m2

51 |Ue4| |Ue5| |Uµ4| |Uµ5| δ/π χ2/dof
KMS 0.47 0.87 0.128 0.138 0.165 0.148 1.64 110.1/130
GL 0.90 1.60 0.13 0.13 0.13 0.08 1.52 22.2/5

Table 1. Best global fit points of KMS [10] and of GL [11]. (The GL result is obtained from parameter

goodness of fit where the number of degrees of freedom corresponds to the number of parameters in common

to the data sets. For more details, see [22].)
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(with the MS eigenvalues much larger than MD and MT , typically ! O(TeV)) there is mixing, but it
is very small. Moreover, the heavy, predominantly sterile, states decouple from the low energy theory.
Therefore, mixing between active and light sterile neutrinos of the same helicity, which could account
for the anomalies described in Section 1, requires the simultaneous presence of small Dirac mass terms
and small Majorana mass terms4 (see, e.g., [27]). We will therefore consider an effective low energy
theory in which all of the entries in (2.4) are very small (usually " O(eV)) after integrating out any
heavy states. Especially attractive is the mini-seesaw, which is similar to the ordinary seesaw except
that the eigenvalues of MS are in the eV range (and much larger than the elements of MD and MT ).
This typically leads to relations between the active-sterile mixings and the mass eigenvalues consistent
with the observations. For example, in the one-family version of (2.4), the 2× 2 mass matrix is

M =
(

mT mD

mD mS

)
.

Taking mT = 0 for simplicity and mS # mD, the physical masses of the predominantly active
and sterile states are m1 ∼ m2

D/mS and m2 ∼ mS , respectively, with an active-sterile mixing θ ∼
mD/mS ∼ (m1/m2)1/2. Thus, mD = O(0.1 eV) and mS = O(1 eV) implies m1 = O(0.01 eV) and
θ = O(0.1). The extension to several families and the roles of family mixing and MT are discussed
below.

2.3 Mini-Seesaw from Higher-Dimensional Operators

Barring fine-tuning, the small values of MD and MT,S needed for active-sterile mixing or for the mini-
seesaw most likely imply that they are suppressed by additional gauge, global, or discrete symmetries
compared to the simplest expectations. The remaining small elements may usually be described5

by higher-dimensional operators (HDO) involving powers of S/Λ, where S represents a SM singlet
4It could instead be due to two distinct kinds of small Dirac mass terms, such as one which links active and sterile

neutrinos, and another which links sterile left and right-chiral fields.
5Another possibility is that the mass terms are exponentially suppressed by nonpertubative effects, such as D-brane

instantons. For reviews, see [28, 29].
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MT : |∆L| = 2 |∆t3L| = 1 Majorana

MD : |∆L| = 0 |∆t3L| =
1
2

Dirac

MS : |∆L| = 2 |∆t3L| = 0 Majorana

Interesting limits: Majorana (MD 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0); Dirac (MT = 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= 0)   

3×3  3×n 

n×n 

n: # of sterile neutrino 



Light sector is essentially active while heavy sterile decouples 

Heavy sterile neutrino decouples at low energy 

Heavy sterile neutrino decays   leptogenesis  

γDHuLN + MsNN

O(1)
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D/MS ∼ 0.01 eV
θ ∼MD/Ms ∼ 10−13

(HuL)2/Ms



field (or fields) whose VEV breaks the symmetry. Λ is the new physics scale, typically involving
heavy particles or string excitations that have been integrated out. The lowest-dimensional operators6

yielding a realistic spectrum are (in superpotential notation)

WT ∼ (HuL)2

Λ
, WD ∼ S

Λ
HuLN, WS ∼ S2

Λ
N2. (2.5)

In the mini-seesaw limit this implies
(

MT MD

MT
D MS

)
=

(
O(ν2

Λ ) O(Sν
Λ )

O(Sν
Λ ) O(S2

Λ )

)
=

(
O(0.01) O(0.1)

O(0.1) O(1)

)
,

where ν ∼ 246 GeV is the electroweak scale and we have taken 〈S〉 = O(TeV) and Λ ∼ 1015 GeV.
Note that if both WD and WS are allowed by a multiplicative symmetry then so is WT , and that in
the mini-seesaw limit the mixing-induced contribution to the light eigenvalues, M2

D/MS ∼ ν2/Λ, is
generically comparable to that from WT .

2.4 Active-Sterile Mixing Parameters in the Mini-Seesaw

The implications of the general mass terms in (2.4) and its (mini-)seesaw limit have been discussed in
detail in [12, 45–49]. Here, we recount the relevant features for our analysis. In the general case the
symmetric mass matrix in (2.4) can be diagonalized to yield 3 + n Majorana mass eigenstates

νL = Aν†
L

(
ν0

L

N c
L

)
,

where Aν
L is a (3 + n)× (3 + n) unitary matrix and νL is a (3 + n)-component vector. The analogous

transformation for the R fields is Aν
R = Aν∗

L . In the important special case MT = 0 and n < 3, there
will be 3 − n massless active neutrinos7. Thus, n = 1 or 2 sterile neutrinos and MT = 0 would be
candidates for describing the NH or the IH for the active neutrinos, respectively.

In the seesaw limit, where the eigenvalues of MS are both large compared to all entries of MD

and MT , one has

Aν†
L = AνT

R =

(
Aν†

L 0
0 AN†

L

)
Bν†

L ,

where Aν†
L (AN†

L ) are 3× 3 (n× n) unitary matrices and

Bν†
L =

(
I −MDM−1

S

M−1†
S M†

D I

)
.

One finds that

Bν†
L

(
MT MD

MT
D MS

)
Bν∗

L =
(

MT −MDM−1
S MT

D 0
0 MS

)
.

6The operator approach for neutrino masses has been developed generally in [27, 29–31]. Specific models that can lead
to such operators include string or U(1)′ motivated models [27, 32], mirror worlds [33, 34], gauge-mediated supersym-
metry breaking [35], compositeness [36], dynamical electroweak symmetry breaking [37], warped extra dimensions [38],
and variations on conventional seesaw and flavor models [39–44].

7There can be additional massless states for singular MD, but we will not consider that case.
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θ ∼MD/Ms ∼ 0.1
m1 ∼M2

D/Ms ∼ 0.01eV
m2 ∼Ms ∼ eV

Gouvea, ’05; 
Gouvea, Jenkins and Vasudevan ’06; 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γD ∼ 10−12

Ms ∼ 10−27Mplanck

Parameters tuned or generated by dynamics 



Mechanisms for small neutrino mass parameters:  

Geometric suppression: wavefunction overlaps in large (or warped) extra 
dimensions; sterile neutrinos in the bulk while SM confines to the brane. 

Arkani‐Hamed, Dimopoulos, Dvali and March‐Russell ’98; Dienes, Dudas, Gherghetta ’98 

Stringy mechansims: mass terms exponentially suppressed by non‐
perturbative instanton effects (e.g. D‐brane instantons);  
No known reason to get small correlated MD, Ms at the same time. 

Blumenhagen, Cvetic, Kachru and Weigand ’09; Langacker ’11 

MD ∼
vMF

MPlanck
∼ 0.1 eV

MF

103 TeV
fundamental gravitational 
scale in 4+δ dimensions 



The effect of ordinary seesaw is to introduce a high‐dimensional operator 
in the low energy theory which is suppressed by a large scale; 

Additional symmetries (global, gauge, discrete) may lead to highly 
suppressed leading operators 

L ⊃ Sp

Mp
LHuNR,

Sq+1

Mq
NRNR,

Sr−1

Mr
(LHu)2

S: SM singlet with a VEV 



L ⊃ Sp

Mp
LHuNR,

Sq+1

Mq
NRNR,
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in a basis for which the charged lepton mass matrix is diagonal, in which case Aν

L is just the active
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where cij ≡ cos θij and sij ≡ sin θij are leptonic mixings, ρ is the CP-violating phase, and Φ =
diag(eiα1 , eiα2 , eiα2) is a diagonal phase matrix. The Majorana phases αi, i = 1, 2, 3 are not observable
in ordinary 3-flavor oscillations, but they do affect the active-sterile mixing. The charged lepton phases
can be chosen so that one of the αi is zero. We will use this freedom to choose α1 = 0. Then,
α3 is unobservable for m3 = 0. The observational data is consistent with the tri-bimaximal form
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except possibly for recent hints from T2K, MINOS, and Double CHOOZ for a nonzero θ13 [54–56].
We will use this form in our numerical illustrations, but have verified that small modifications are not
important for our purposes.

The active-sterile neutrino mixing is described by the 3× n matrix

U = iMDM−1
S = iDM−1/2

S ,

where the i results from the phase redefinitions mentioned above. From (2.6) and (2.7), the most
general solution for D in terms of L is

D = LR(zk), (2.10)

where R is an orthogonal n × n complex matrix, which depends on n(n − 1)/2 complex parameters
zk as well as signs. Thus, the mixings can be predicted in terms of the PMNS matrix, the light and
heavy mass eigenvalues, and the zk.
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Φ = Diag(eiα1 , eiα2 , eiα3) αi : Two independent at most 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to be real and positive by appropriate choices of mass eigenstate phases, and L ≡ Aν

Lm1/2
d . It is

convenient to view L as (3 × n)-dimensional: for n < 3 one can simply remove the 3− n columns of
zeros corresponding to mi = 0, while for n > 3 one can add n − 3 extra columns of zeros. We work
in a basis for which the charged lepton mass matrix is diagonal, in which case Aν

L is just the active
neutrino (PMNS) matrix [50, 51]

Aν
L =




1 0 0
0 c23 s23

0 −s23 c23








c13 0 s13e−iρ

0 1 0
−s13eiρ 0 c13








c12 s12 0
−s12 c12 0

0 0 1



 Φ, (2.8)

where cij ≡ cos θij and sij ≡ sin θij are leptonic mixings, ρ is the CP-violating phase, and Φ =
diag(eiα1 , eiα2 , eiα2) is a diagonal phase matrix. The Majorana phases αi, i = 1, 2, 3 are not observable
in ordinary 3-flavor oscillations, but they do affect the active-sterile mixing. The charged lepton phases
can be chosen so that one of the αi is zero. We will use this freedom to choose α1 = 0. Then,
α3 is unobservable for m3 = 0. The observational data is consistent with the tri-bimaximal form
s12 = 1/

√
3, θ13 = 0, θ23 = π/4 [52, 53], i.e.,

Aν
L =





√
2
3

√
1
3 0

−
√

1
6

√
1
3

√
1
2√

1
6 −

√
1
3

√
1
2




Φ ≈




0.82 0.58 0
−0.41 0.58 0.71

0.41 −0.58 0.71



 Φ, (2.9)

except possibly for recent hints from T2K, MINOS, and Double CHOOZ for a nonzero θ13 [54–56].
We will use this form in our numerical illustrations, but have verified that small modifications are not
important for our purposes.

The active-sterile neutrino mixing is described by the 3× n matrix

U = iMDM−1
S = iDM−1/2

S ,

where the i results from the phase redefinitions mentioned above. From (2.6) and (2.7), the most
general solution for D in terms of L is

D = LR(zk), (2.10)

where R is an orthogonal n × n complex matrix, which depends on n(n − 1)/2 complex parameters
zk as well as signs. Thus, the mixings can be predicted in terms of the PMNS matrix, the light and
heavy mass eigenvalues, and the zk.
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The most general solution:  R(zk): orthorgonal n×n complex matrix 

MT = 0, n sterile neutrinos, 3‐n massless active neutrinos; 
n=1 Normal hierarchy; n=2 Inverted hierarchy 

seesaw tells: 

n = 1, Uα4 = i
Mα4

D

M4
= ±iAνα3

L

√
m3

M4
, α = e, µ, τ.

Aνe3
 small, |Ue4 |<< 0.1 

U = iMDM−1
S = iDM−1/2

S = iAν
LR(zk)m1/2

d M−1/2
s



Uαi = i
Mαi

D

Mi
= iAναj

L
√

mj Rji
1√
Mi

,

α = e, µ, τ ; j = 1, · · · , n; i = 4, · · · , 3 + n

n > 1 

n=2 
NH: hard to get large enough Ue4, Ue5; 

IH:  1 massless active neutrino; a complex angle z; 

For n = 1 sterile neutrino one has a NH, with m1 = m2 = 0, and with m3 ∼ 0.047 eV determined
from the atmospheric and long baseline neutrino oscillations. The active-sterile mixings are given by

Uα4 = i
Mα4

D

M4
= ±iAνα3

L

√
m3

M4
, α = e, µ, τ. (2.11)

Because of the stringent upper limit on Aνe3
L ! 0.24, Ue4 is too small to account for the LSND/MiniBooNE

anomaly [12] (even ignoring the need for CP violation to differentiate νµ from ν̄µ and the lack of a
Solar mass splitting between m1 and m2).

For n > 1

Uαi = i
Mαi

D

Mi
= iAναj

L
√

mj Rji
1√
Mi

, (2.12)

where α = e, µ, τ ; j = 1, · · · , n; and i = 4, · · · , 3 + n. In particular, for n = 2 there is one massless
neutrino. In principle one could have either a NH or IH for the three light neutrinos. However, for
the normal case it is difficult to obtain large enough active-sterile mixings because of the small values
of Aνe3

L and m2. We therefore consider an IH with m3 = 0, with the active-sterile mixings determined
by the masses and PMNS matrix, as well as one complex parameter8 z, i.e.,

R(z) =
(

cos z sin z
− sin z cos z

)
. (2.13)

Because of the possible Majorana phases in Aν
L and because R is complex, there is room for CP

violation in the active-sterile mixing. Note that all values of the PMNS parameters and of the mass
eigenvalues (with m3 = 0) are consistent with the minimal mini-seesaw parametrization.

To test whether Eq. 2.12 could account for the LSND and MiniBooNE results, we take the exper-
imental data to construct a χ2 function

χ2(z, α2, M4, M5) =
∑

i

(
P theory

i (z, α2, M4, M5)− P exp
i

)2

σ2
i

, (2.14)

where P exp
i is the oscillation probability for bin i from the experimental data and σi is the corresponding

error. P theory
i (z, α2, M4, M5) are computed from Eq. 2.1, 2.12, 2.13. We assume the IH, so α2 is the

only relevant unknown active neutrino parameter, and set the PMNS matrix to be Eq. 2.9. We
include 8 bins each for LSND, MiniBooNE neutrino and MiniBooNE anti-neutrino data. We do not
use MiniBooNE data for E < 475 MeV (L/E > 1.13 m/MeV) because of the unexplained excess in
the low energy bins9. For the MiniBooNE anti-neutrino search, we performed two separate fits, using
just the 2010 results or including the 2011 data. Before showing the results, we want to emphasize
the differences between our fit and the global fits in [10, 11]. Though our fit is crude in the sense
of not including all of the oscillation data available, it is a more direct test of the minimal mini-
seesaw mechanism as an explanation for the short baseline oscillation anomalies. The global fits
employ all physical parameters: the sterile neutrino masses, mixing angles and CP-violating phase,
while the parameters in the minimal mini-seesaw are more restricted. Our fits use 5 real parameters
characterizing the mini-seesaw mechanism: the complex angle z, active neutrino CP-violating phase
α2, and two sterile neutrino masses. The mixing angles between the active and sterile neutrinos and

8The discrete sign in R can be absorbed by redefining the sign of a mass eigenstate field. For similar reasons it
suffices to restrict 0 ≤ α2 < π.

9Comparison between data with E > 475 MeV and E > 300 MeV are performed in [57, 58].
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n = 2, IH, one massless active neutrino, choose m3 = 0; 
thus α3 = 0  

Uαi = i
Mαi

D

Mi
= iAναj

L
√

mj Rji
1√
Mi

,

α = e, µ, τ ; j = 1, 2; i = 4, 5

5 real free parameters: 
α2 , complex angle z, two sterile neutrino masses: M4, M5  

6 complex Uαi, M4, M5  (6 |U|, M4, M5, δ in global fits)  



Uαi = i
Mαi

D

Mi
= iAναj

L
√

mj Rji
1√
Mi

,

α = e, µ, τ ; j = 1, 2; i = 4, 5

the sterile CP-violating phase can be determined from these 5 parameters using Eq. 2.12. Even though
we do not employ the full data set, we require the mixings between sterile and active neutrinos to be
smaller than 0.15 in the numerical evaluation of the best fit to avoid conflicting with the reactor data
or with other neutrino oscillation experiments with null results.

The best fit results are presented in Table 2. They are in the right ballpark compared to the
global fit values. In particular, the predicted parameters are quite close to the GL fit values. We also
show the allowed regions of z = reiθ at 68% and 95% C.L. from our simple fits in Figure 1, fixing the
other three parameters to the best fit values. (The best fit constraint |Uαi| < 0.15 is not enforced in
these contours.) The two fits using 2010 and 2011 data give similar results, though the χ2 is larger
for the 2011 data. The predicted transition probabilities as a function of L/E for both LSND and
MiniBooNE at our best fit point are presented in Figure 2. Further details are given in the Appendix.

z α2 ∆m2
41 ∆m2

51 |Ue4| |Uµ4| |Ue5| |Uµ5| δ/π χ2/dof
MMS(2010) 0.39 e−i0.53π 2.01 0.89 1.78 0.15 0.15 0.07 0.15 1.25 18.6/19
MMS(2011) 0.38 e−i0.54π 1.92 0.89 1.76 015 0.15 0.07 0.15 1.21 24.3/19

KMS 0.47 0.87 0.128 0.165 0.138 0.148 1.64 110.1/130
GL 0.90 1.60 0.13 0.13 0.13 0.08 1.52 91.6/100

Table 2. Best fit points using the minimal mini-seesaw (MMS) formalism derived in the text. The first row

uses the 2010 MiniBooNE anti-neutrino results while the second one includes the 2011 data. For comparison,

we also show the global fit results KMS [10] and GL [11].

!

0 1 2 3 4

!1.0

!0.5

0.0

0.5

1.0

r

Θ!Π

!

0 1 2 3 4

!1.0

!0.5

0.0

0.5

1.0

r

Θ!Π

Figure 1. The allowed regions of z = reiθ at 68% (red, dotted) and 95% (blue, solid) C.L., fixing α2, M4, M5

to the best fit values. Left: fit using the 2010 MiniBooNE anti-neutrino data. Right: fit including 2011 data.

They are almost identical. The best fit points are denoted by diamonds.

We have emphasized that one typically expects MT to be non-zero and, in the mini-seesaw limit,
to yield contributions to the active neutrino masses comparable to those induced by the mixing.
MT != 0 of course reduces the predictabilty of the theory. Assuming that all of the mass terms are
of the order of magnitude suggested by (2.5) this additional freedom could allow a NH or degenerate
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m2
β ≡

∑

i

|Aei|2m2
i

mββ ≡
∑

i

(Aei)2mi = (MT )11

Σ =
5∑

i=4

|Mi|

tritium decay 

neutrinoless double β decay 

Cosmology 

suppression of events at the endpoint of size 1− |Uei|2. A detailed study has been performed in [62].
While current experiments do not exclude an eV-scale sterile neutrino with mixing angle ∼ 0.1, Katrin
would start to be sensitive to this parameter region. As shown in Table 3 the value of mβ for our best
fit point in the minimal mini-seesaw is 0.18 eV.

3+2 (eV) 3+2 MSS (eV) EXP (eV)
mβ ∼ 0.2 0.18 (1− 2)→ 0.2
mββ 0− 0.08 0 (0.2− 0.7)→ (0.01− 0.03)
Σ ∼ 2 2.4 (0.5− 1)→ (0.05− 0.1)

Table 3. Major constraints on the sterile neutrino masses. The second column lists typical values for generic

(non-degenerate) 3+2 schemes, while the third are the results at the best fit point of the minimal mini-seesaw.

mβ and Σ are dominated by the effects of the eV-scale sterile neutrinos. The last column is the range probed

by current and future experiments.

The process ββ0ν constrains the effective Majorana mass in the presence of mixing between light
Majorana neutrinos,

mββ ≡
∑

i

(Aei)2mi = (MT )11, (2.16)

where the second equality is only true when all of the mass eigenstates are light compared to an
MeV. In the particular minimal case we discussed above, MT = 0 and one expects mββ = 0 due to
a cancellation between the light and eV-scale states. This is in contrast to generic 3 + 2 models [43],
including the mini-seesaw with MT %= 0, in which mββ can vary from 0 to around 0.08 eV or 0.04 eV
for the IH or the NH, respectively (both cases assuming a massless lightest state). The best current
upper limit10 is from the Cuoricino experiment [64] in the Gran Sassso Laboratory, which obtains
mββ < (0.19− 0.68) eV at 2σ, with the range due to the nuclear matrix element. Future experiments
should be sensitive down to (0.01 - 0.03) eV [65–70], which start to constrain MT .

Other existing and future implications of mixing with eV-scale sterile neutrinos are considered in
[62, 71–76].

2.5.2 Cosmological Constraints

Though the 3 active + 2 eV-scale sterile neutrino model fits nicely into the mini-seesaw paradigm and
could be explained easily by an effective theory containing a SM singlet with a TeV-scale VEV, it
is nontrivial to accomodate two eV-scale sterile neutrinos into a consistent cosmological history. On
one hand, current cosmic microwave background (CMB) and large-scale structure (LSS) observations
show a slight preference for additional relativistic degrees of freedom beyond the SM prediction.
The combination of the CMB, measurement of the Hubble parameter from HST observations and
baryon acoustic oscillation (BAO) data shows that the effective number of relativistic degrees of
freedom Neff is greater than the SM value 3.046 at 98.4% C.L. [77]. By further combining with the
Atacama Cosmology Telescope (ACT) power spectrum measurement, the number is estimated to be
Neff = 5.3±1.3 (68% C.L.) [78]. Similar analyses that show preferences for light sterile neutrinos can
be found in [79, 80]. However, it is argued in [81] that once the prior-dependence in the cosmological
analysis is removed, the latest cosmological data show no evidence for deviations from the SM value of

10One experiment [63] claims to observe a positive signal, corresponding to mββ ∼ 0.3 eV, but this has not been
confirmed.
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n

p
= exp

(
−mn −mp

T
− ξ

)

Mz
S = (1 + z)nMs

Kang, Steigman ’92; Foot and Volkas ’95; 
Foot, Thomson and Volkas ’95;  
Abazajian, Bell, Fuller and Wong ’04 …. 

Fardon, Nelson, Weiner ’03; 
Kaplan, Nelson, Weiner ’04 

Chacko, Hall, Oliver and Perelstein ’04; 



Modify 3+1 scheme by introducing an “effective” large CP violation phase  
(effective non‐unitary transition matrix)  

3 + 1 light sterile + 1 Heavy sterile neutrino:      Nelson ’10  

1 light sterile: mass splitting ~ O(eV)  
1 heavy sterile: mass splitting >> 10 eV, oscillation length averaged over 

Pνµ(ν̄µ)→νe(ν̄e) = sin2 2θµe sin2 (x41 ± β) + κ

κ = |Uµ4|2 |Ue4|2
{
(1− r)2 + a

[
(1− r)2 + 4r sin2 β

]}

r ≡
∣∣U∗µ4Ue4 + U∗µ5Ue5

∣∣ /
∣∣U∗µ4Ue4

∣∣

β ≡ 1
2

tan−1

(
sinφ|Ue5||Uµ5|

|Ue4||Uµ4| + cos φ|Ue5||Uµ5|

)

Reduction of phase space 

Modified 3+1 schemes 





Kuflik, McDermott and Zurek ’12   





Smirnov and Funchal, ’06  

The heavy sterile has a mixing 
comparable to the mixing of the  
light sterile, which is large !! 




