The CMB Neutrino Connection

Gil Holder

• Neutrino masses

- CMB lensing, not CMB acoustic peaks
- N_{eff}
 - be very careful with how you treat Helium and what you assume about BBN

Neutrino Masses from CMB

- primary CMB not very sensitive to neutrino masses below ~1 eV
- WMAP7-only: m_v<1.1 eV
- WMAP7+H0: m_v<0.36 eV

Massive Neutrinos in Cosmology

- Free streaming of neutrinos on small scales leads to time-dependent suppression of power
- CMB only sensitive to matter-radiation equality epoch (not affected by m<0.3 eV)
- Free-streaming scale roughly (m/1 eV) 0.1 h/ Mpc

Massive Neutrinos and P(k)

- e.g: 3 neutrinos, each SS 0.2 eV
- SS total amount of damping mainly set by sum of masses P(k)/P(
- damping scale set by individual masses

Gravitational deflection

Neutrinos & CMB Lensing

• Peak at I=40 (k_{eq} =[300 Mpc]⁻¹ at z = 2): coherent over degree scales

RMS deflection angle is only ~2.7'

SPT Lensing Mass Map

20h to 7h; -40d to -65d

features have S/N>1 but not by much color stretch +-0.05

CMB Informs BBN Constraints

 acoustic peaks tell you baryon density

Helium & N_{eff} 18

- extra light species change expansion rate at early times
- changes age of universe at recombination
- changes damping scale

CMB Informs BBN Constraints

 acoustic peaks tell you baryon density

CMB Informs BBN Constraints

Summary

- CMB will best probe neutrino masses with CMB lensing; results coming soon
- CMB probes of N_{eff} are partly degenerate with primordial Helium abundance, so inferences are sensitive to what you assume