

RECENT RESULTS

(SHAHAB JOUDAKI)

COLLABORATORS: M. KAPLINGHAT & K. ABAZAJIAN

CENTER FOR COSMOLOGY UNIVERSITY OF CALIFORNIA, IRVINE

Agenda

SIGNATURES OF NEUTRINOS

NEUTRINO CONSTRAINTS IN EXTENDED SPACES

MASSIVE STERILE NEUTRINOS

NEUTRINO FORECAST

HOW MANY NEUTRINOS?

OPEN QUESTIONS: EFFECTIVE NUMBER OF NEUTRINOS AND THEIR MASSES

PRESENT DATA

WMAP7+BAO+HST: N_{EFF} = 4.34 +/- 0.87 (WMAP ALONE > 2.7 (95% CL))
KOMATSU ET AL (2011)

WMAP7+BAO+HST+ACT: N_{EFF} = 4.56 +/- 0.75 (WMAP+ACT: 5.3 +/- 1.3)

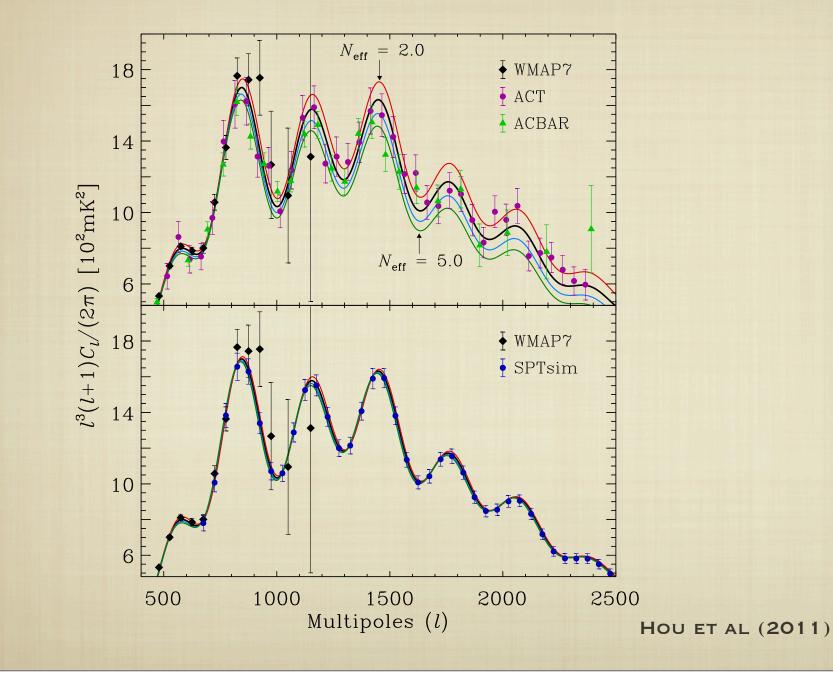
DUNKLEY ET AL (2011)

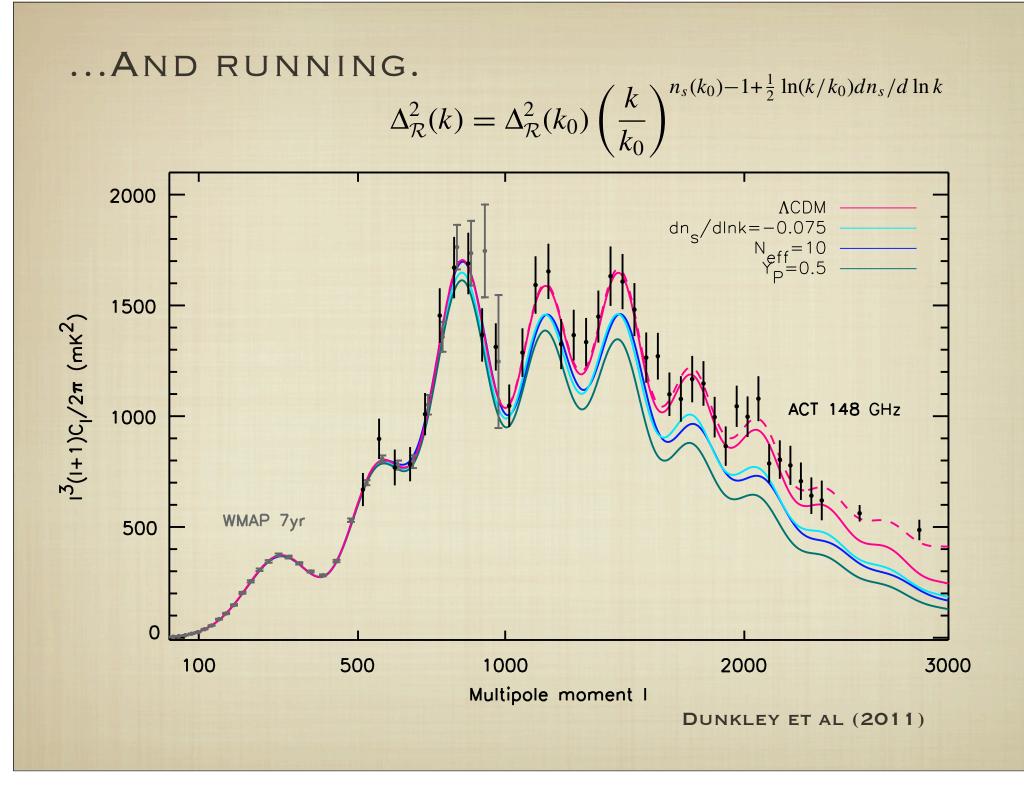
WMAP7+BAO+HST+SPT: N_{EFF} = 3.86 +/- 0.42 (WMAP+SPT: 3.85 +/- 0.62)
Keisler et al (2011)

How ROBUST ARE THESE ESTIMATES?

SIGNATURES OF N_{EFF} (z_{eq} , $\Omega_b h^2$, θ_s , θ_d)

MATTER-RADIATION EQUALITY: $1 + z_{eq} = \frac{\Omega_m}{\Omega_r} = \frac{\Omega_m h^2}{\Omega_{\gamma} h^2} \frac{1}{1 + 0.2271 N_{eff}}$


KEEPING z_{eq} and $\Omega_b h^2$ fixed as N_{eff} increases achieved by boosting DM density

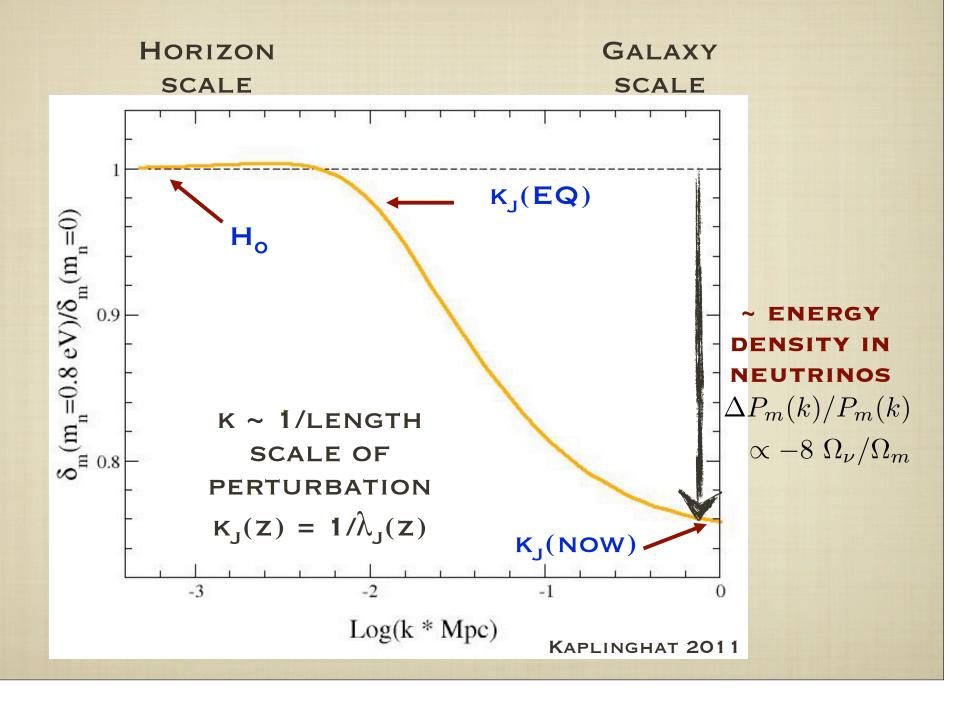

AN INCREASE IN N_{eff} gives an increased expansion rate. Keeping θ_s fixed:

$$\theta_d \propto (1+f_{
u})^{0.25}/\sqrt{1-Y_p} \; \theta_s$$
 Hou et al (2011)

Thus, suppression of CMB damping tail picked out as $N_{eff} > 3$ when Y_P is known. Constraints relax when Y_P is free.

N_{EFF} AND Y_P

DISTANCES


CONSTRAINT ON N_{eff} can be improved via lowredshift distances and H_0 , as these are useful in constraining DM density, and by extension N_{eff} .

HOWEVER, DISTANCES SUFFER FROM IGNORANCE OF DARK ENERGY. ACCURATE SN DISTANCES CRITICAL.

DARK ENERGY MOREOVER CORRELATED WITH NEUTRINO MASS. IN CMB TT, NEUTRINO MASSES SHIFT FIRST PEAK POSITION TO LOWER ℓ BY CHANGING FRACTION OF MATTER-RADIATION AT DECOUPLING.

WILL BE CORRELATED WITH THE CURVATURE. USE BAO AND H_0 TO REDUCE CORRELATIONS.

OVERDENSITIES W/ MASSIVE NEUTRINOS

Agenda

SIGNATURES OF NEUTRINOS

NEUTRINO CONSTRAINTS IN EXTENDED SPACES

MASSIVE STERILE NEUTRINOS

NEUTRINO FORECAST

CONSTRAINTS IN EXPANDED SPACES

GIVEN THE PREFERENCE FOR $N_{eff} > 3$, we relax the strong inflation prior. Large curvature in stringy models and large negative running in multi-field models.

Parameter	Symbol	Prior
Baryon density	$\Omega_b h^2$	$0.005 \rightarrow 0.1$
Dark matter density	$\Omega_{ m dm} h^2$	$0.01 \rightarrow 0.99$
Angular size of sound horizon	$ heta_s$	$0.5 \rightarrow 10$
Optical depth to reionization	au	$0.01 \rightarrow 0.8$
Scalar spectral index	n_s	$0.5 \rightarrow 1.5$
Amplitude of scalar spectrum	$\ln\left(10^{10}A_s\right)$	$2.7 \rightarrow 4$
Effective number of neutrinos	$N_{ m eff}$	$1.047 \rightarrow 10$
Sum of neutrino masses	$\sum m_{\nu} [\text{eV}]$	$0 \rightarrow 5$
Constant dark energy EOS	w	$-3 \rightarrow 0$
Running of the spectral index	$\frac{dn_s}{d\ln k}$	$-0.2 \rightarrow 0.2$
Curvature of the universe	Ω_k	$-0.4 \rightarrow 0.4$
Primordial helium abundance	Y_p	$0 \rightarrow 1$
Present dark energy EOS	w_0	$-3 \rightarrow 0$
Derivative of dark energy EOS	w_a	$-10 \rightarrow 10$
Early dark energy density	Ω_e	$0 \rightarrow 0.2$

JOUDAKI 2012

Λ CDM WITH MASSIVE NEUTRINOS

$SPT+WMAP+H_0+BAO$

		ACDIC		
		ACDM	ΛCDM	ΛCDM
			$+ N_{\rm eff}$	$+\sum m_{ u}$
Primary	n_s	0.9648 ± 0.00	$92\ 0.981\pm 0.01$	$13 \ 0.9661 \pm 0.0096$
Extended	N_{eff}		3.87 ± 0.42	2 —
	$\sum m_{\nu} [eV]$			< 0.45
	Y_p			
Derived	σ_8	0.811 ± 0.01	8 0.862 ± 0.03	$33 0.758 \pm 0.042$
		ΛCDM	ΛCDM	ΛCDM
		$+N_{\rm eff}+\sum m_{\nu}$	$+N_{\rm eff}+Y_p$	$+N_{\rm eff}+\sum m_{\nu}+Y_p$
Primary	n_s	0.987 ± 0.013	0.983 ± 0.013	0.987 ± 0.013
Extended	$N_{ m eff}$	4.00 ± 0.43	3.70 ± 0.54	3.99 ± 0.59
	$\sum m_{\nu} [eV]$	< 0.67		< 0.73
	Y_p		0.277 ± 0.037	0.261 ± 0.039
Derived	σ_8	0.798 ± 0.053	0.860 ± 0.034	0.796 ± 0.055

FROM METAL-POOR EXTRAGALACTIC HII REGIONS: $Y_P = 0.2534 + - 0.0083$ (AVER ET AL 2011)

JOUDAKI 2012

WCDM WITH MASSIVE NEUTRINOS

SPT+W	MAP+	H ₀ +BAO	wCDM	$\begin{array}{c} \Lambda \text{CDM} \\ +N_{\text{eff}} + \sum m_{\nu} \end{array}$	wCDM + N_{eff} + $\sum m_{\nu}$
I	Primary	n_s	0.958 ± 0.011	0.987 ± 0.013	0.968 ± 0.022
]	Extended	w	-1.10 ± 0.11		-1.31 ± 0.30
		$N_{ m eff}$		4.00 ± 0.43	3.59 ± 0.57
		$\sum m_{\nu} [eV]$		< 0.67	< 1.2
		Y_p			
1	Derived	σ_8	0.848 ± 0.049	0.798 ± 0.053	0.775 ± 0.063

WITH W: N_{EFF} CONSISTENT WITH 3 TO 10 (DOWN FROM 2.20)

 $\sum M_{\nu} < 1.2 \text{ eV}$ - Factor of 2 worse

CONSTRAINT ON $\mathcal W$ DEGRADES BY FACTOR OF 3 B/C NEUTRINOS

RELAXING THE STRONG INFLATION PRIOR

				······································	
		· DAO	ΛCDM	w CDM	$w ext{CDM}$
SPT+WN	$AP+H_0$	+BAO	$+N_{\rm eff}+\sum m_{\nu}$	$+N_{\rm eff}+\sum m_{\nu}$	$+N_{\rm eff}+\sum m_{\nu}+Y_p$
			$+\frac{dn_s}{d\ln k}+\Omega_k$	$+\frac{dn_s}{d\ln k} + \Omega_k$	$+\frac{dn_s}{d\ln k} + \Omega_k$
	Primary	n_s	0.978 ± 0.015	0.955 ± 0.025	0.949 ± 0.027
	Extended	w		-1.46 ± 0.39	-1.35 ± 0.41
		N_{eff}	3.74 ± 0.58	3.10 ± 0.74	3.38 ± 0.86
		$\sum m_{\nu} [eV]$	< 1.2	< 1.2	< 1.4
		$rac{dn_s}{d\ln k}$	-0.011 ± 0.019	-0.018 ± 0.019	-0.033 ± 0.031
		$100\Omega_k$	0.75 ± 0.93	0.13 ± 0.99	0.76 ± 1.5
		Y_p			0.196 ± 0.084
	Derived	σ_8	0.768 ± 0.070	0.803 ± 0.085	0.779 ± 0.091

 N_{eff} 1.20 instead of 2.20 (mainly b/c running)

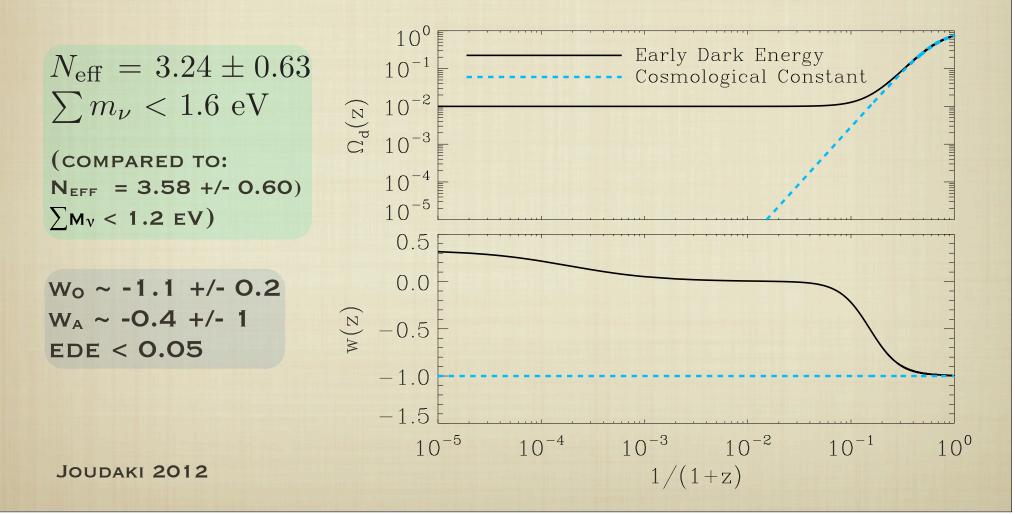
 $\sum M_{v} < 1.2 \text{ eV}$ - factor of 2 worse (mainly b/c curvature) (mass bound at 1.2 eV even when w+curvature)

 σ_8 decreases (from 0.80) as $\sum M_v$ increases.

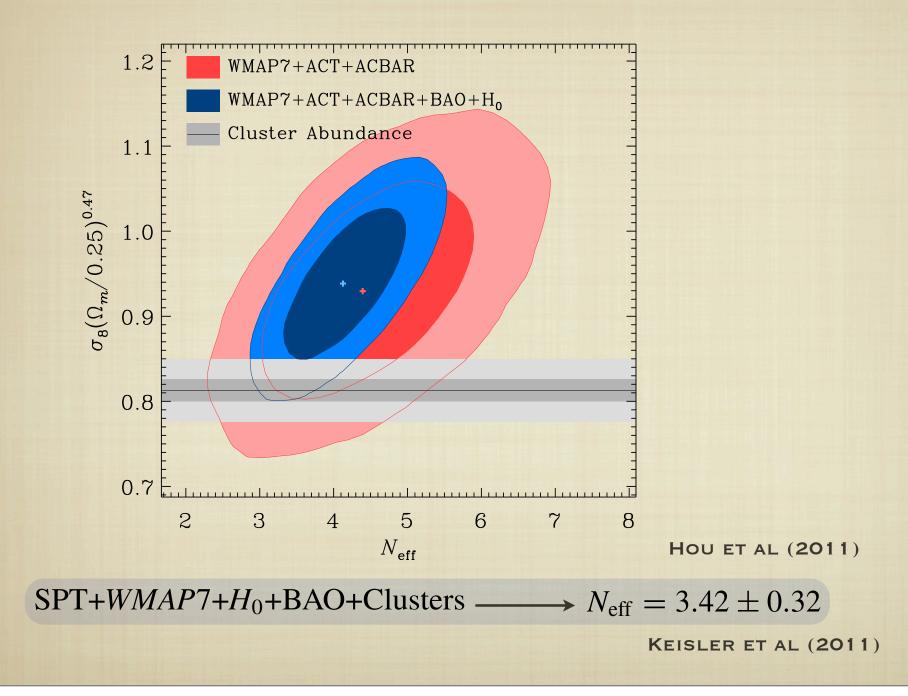
Further agreement with $N_{eff}=3$ when W and Y_P included.

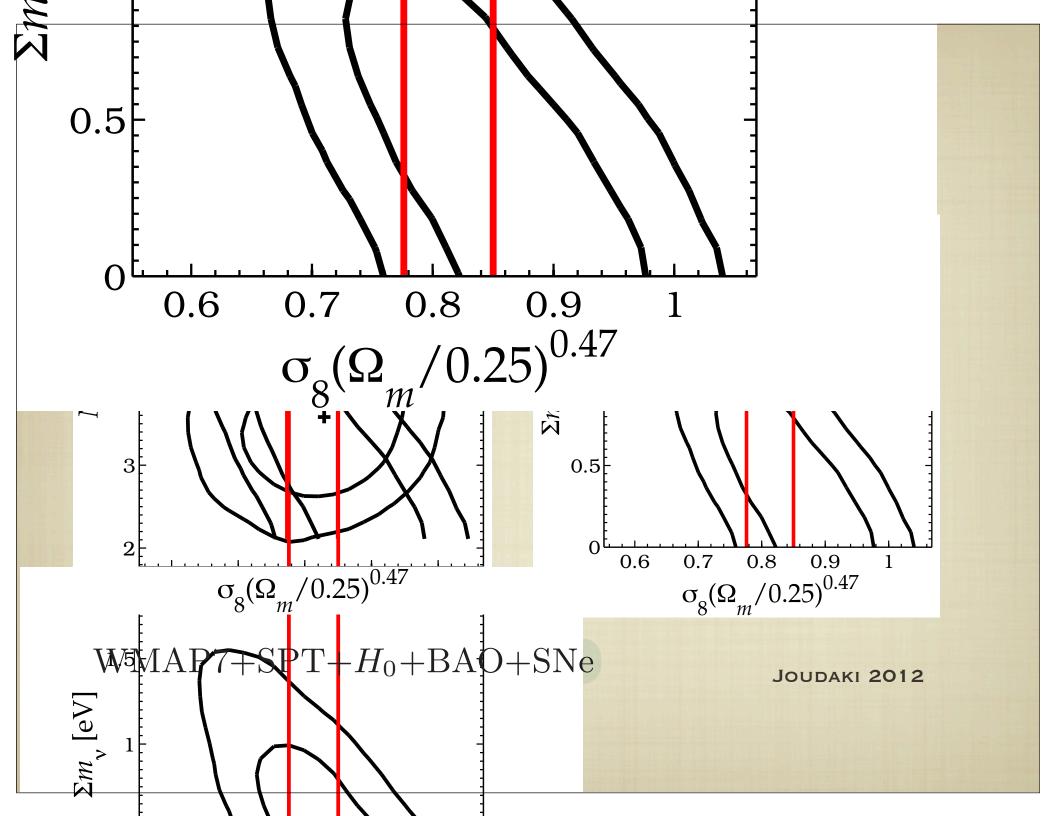
Large error bars. curv, w, run within 10 of null values.

JOUDAKI 2012


INCLUDING UNION2 SNE

			w CDM	$w ext{CDM}$	$w ext{CDM}$	$w ext{CDM}$
SPT+	WMAP+.	$H_0 + BAO +$	-SNe	$+N_{\rm eff}+\sum m_{\nu}$		$+N_{\text{eff}}+\sum m_{\nu}+Y_{p}$
					$+\frac{dn_s}{d\ln k}+\Omega_k$	$+\frac{dn_s}{d\ln k}+\Omega_k$
	Primary	n_s	0.960 ± 0.010	0.981 ± 0.015	0.970 ± 0.019	0.953 ± 0.026
	Extended	w	-1.049 ± 0.072	-1.09 ± 0.11	-1.10 ± 0.11	-1.13 ± 0.12
		N_{eff}		3.88 ± 0.44	3.58 ± 0.60	3.78 ± 0.61
		$\sum m_{\nu} [\text{eV}]$		< 0.92	< 1.2	< 1.7
		$rac{dn_s}{d\ln k}$			-0.013 ± 0.019	-0.035 ± 0.030
		$100\Omega_k$			0.64 ± 0.95	1.2 ± 1.1
		Y_p				0.176 ± 0.079
	Derived	σ_8	0.830 ± 0.038	0.790 ± 0.060	0.774 ± 0.072	0.751 ± 0.081


SNE CONSTRAIN W: 35% REDUCTION FOR SINGLE PARAMETER EXTENSION, AND FACTOR 4 IN FULL EXTENSION. THIS HELPS BREAK CORRELATION WITH N_{EFF} - BACK TO 20. BUT RELAXING STRONG INFLATION PRIOR - AGAIN 10. ALTERNATIVE DARK ENERGY PARAMETERIZATIONS


$$w(a) = w_0 + (1-a)w_a$$

Inflation prior enforced: $\sum M_{\nu} < 1.2 \text{ eV}$ (from 0.9 eV) Inflation prior relaxed: $\sum M_{\nu} < 1.4 \text{ eV}$ (from 1.2 eV)

IS THERE A TENSION WITH CLUSTERS?

SUMMARY

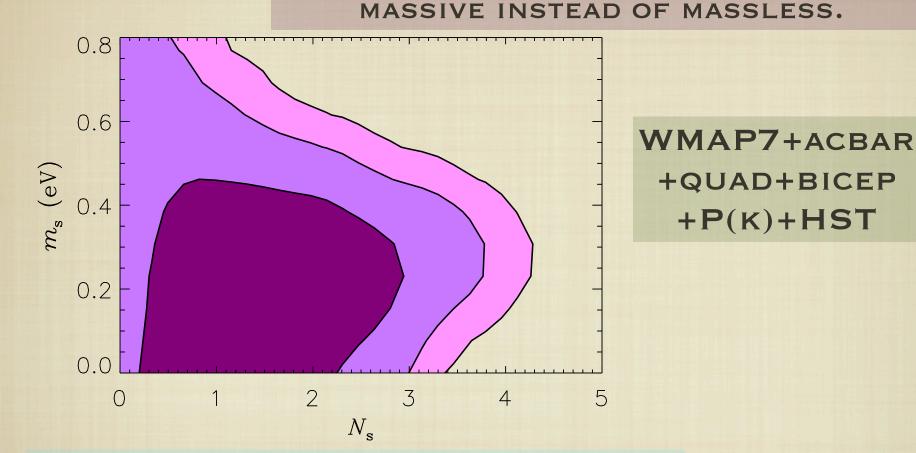
GIVEN WMAP7+SPT+BAO+HST+SNE, EXPLORED DEPENDENCE OF CONSTRAINTS ON N_{eff} AND $\sum M_{\nu}$ ON UNDERLYING COSMOLOGY.

IN COMBINED ANALYSIS WITH THE MASS, $N_{eff} > 3$ at 2.20. This becomes consistent with $N_{eff} = 3$ at 10 in extended spaces.

THE NEUTRINO MASS BOUND DEGRADES FROM 0.45 EV (95% CL) TO 1.0 EV WHEN CURVATURE INCLUDED, AND DOWN TO 1.2 EV WHEN DE, N_{eff}, RUNNING ALSO INCLUDED. FURTHER ADDING HELIUM ABUNDANCE AND EDE DEGRADES BOUND TO 2.0 EV.

IN EXTENSIONS OF COSMOLOGICAL MODEL, σ_8 consistent with cluster abundances at 1 σ , Y_P consistent with HII regions at 1 σ , and spectral index consistent with unity at 1-2 σ .

Agenda

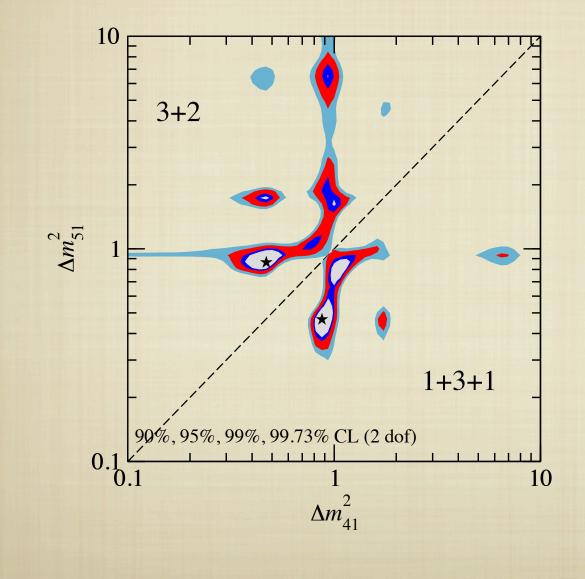

SIGNATURES OF NEUTRINOS

NEUTRINO CONSTRAINTS IN EXTENDED SPACES

MASSIVE STERILE NEUTRINOS

NEUTRINO FORECAST

MASSIVE STERILE NEUTRINOS IN THE UNIVERSE? LET EXTRA CONTRIBUTIONS TO NEFF BE


COSMOLOGY DOES NOT EXCLUDE STERILE NEUTRINOS IF THEY ARE NOT TOO MASSIVE.

HAMANN ET AL 2010

EXTENDED WITH \mathcal{W} AND N_{eff} - POTENTIALLY LARGER MASSES ALLOWED.

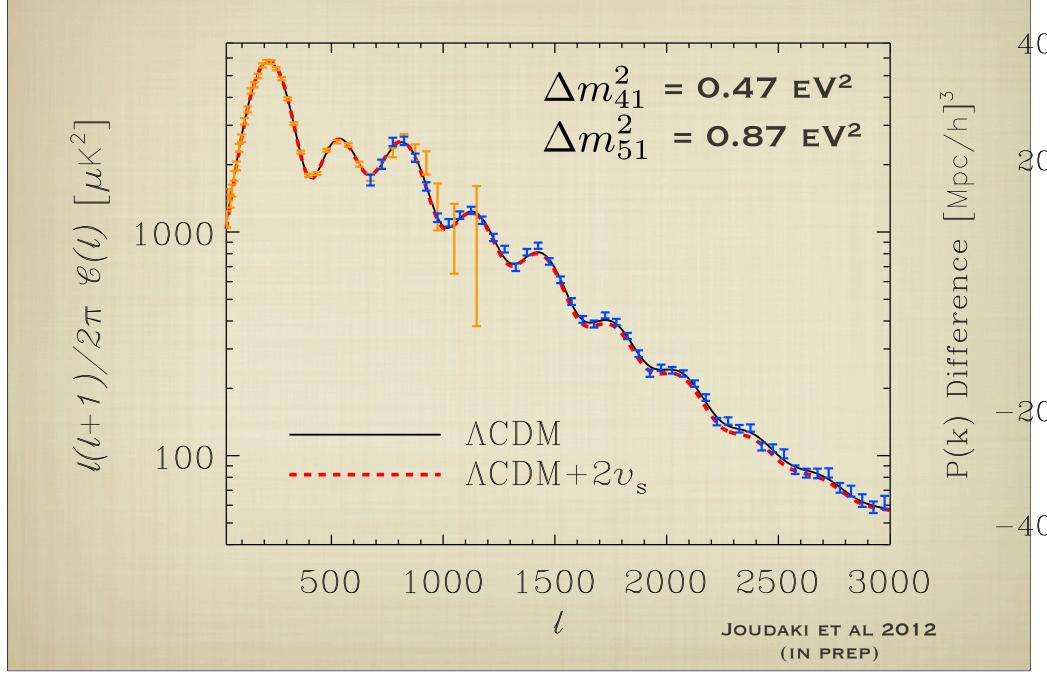
HAMANN ET AL 2011

ARE THERE STERILE NEUTRINOS AT THE EV SCALE?

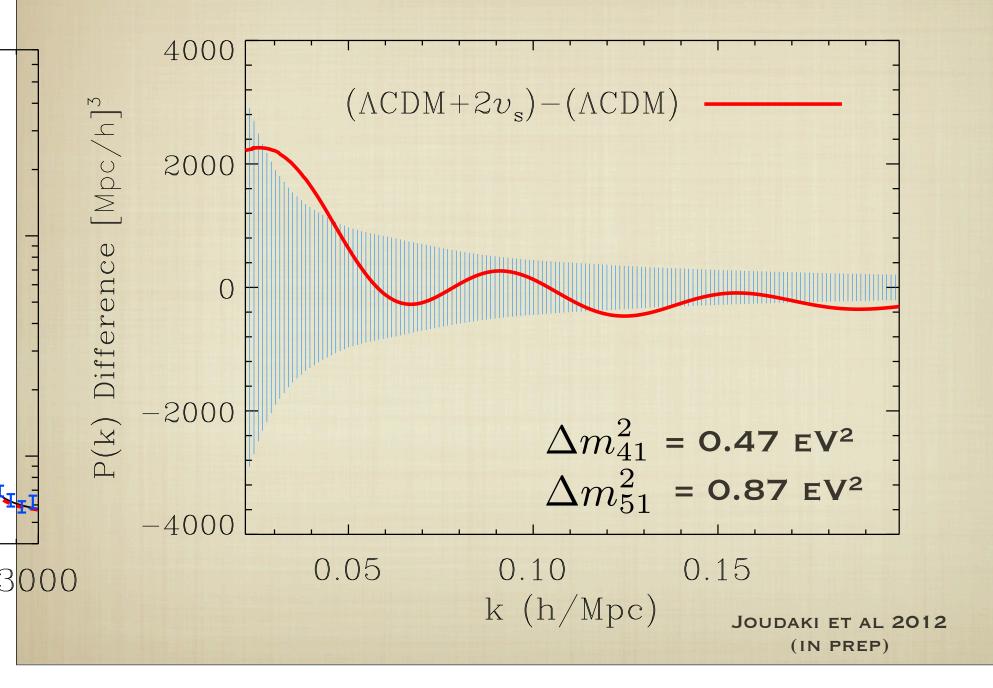
 Δm^2_{41} = 0.47 eV² Δm^2_{51} = 0.87 eV²

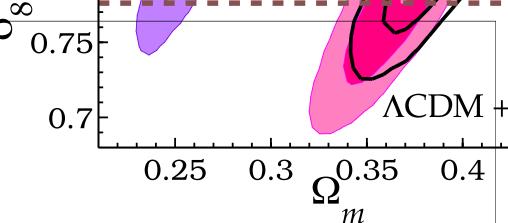
KOPP, MALTONI, SCHWETZ (2011)

USE KOPP ET AL 2011 AS PRIOR


3+1: Δm^2_{41} = 1.78 eV²

MINIMAL Λ CDM: $\Delta \chi^2 = 24.7$ CURVED wCDM: $\Delta \chi^2 = 12.0$ 3+2: $\Delta m_{41}^2 = 0.47 \text{ eV}^2$ $\Delta m_{51}^2 = 0.87 \text{ eV}^2$ MINIMAL Λ CDM: $\Delta \chi^2 = 22.6$ CURVED wCDM: $\Delta \chi^2 = 9.3$


WMAP7+P(K)+HST +SNE (UNION2)


> KRISTIANSEN & ELGAROY (2011)

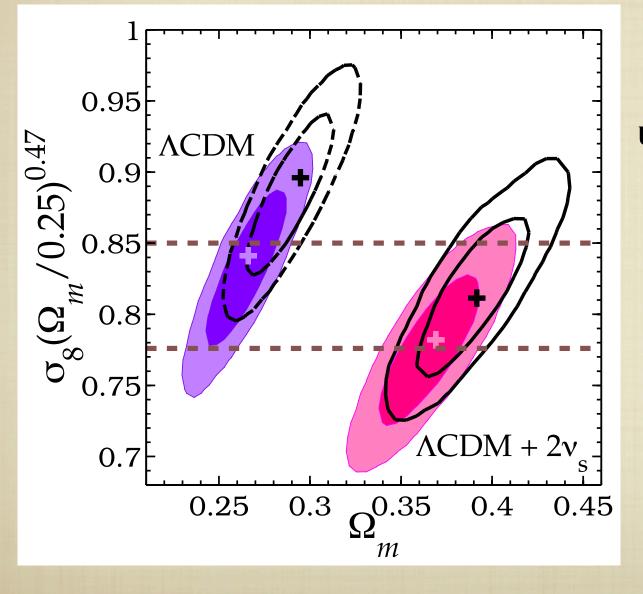
USE KOPP ET AL 2011 AS PRIOR: CMB

USE KOPP ET AL 2011 AS PRIOR: P(K)

IS 3+2 CONSISTEN

WMAP7+SPT+P(K)+H

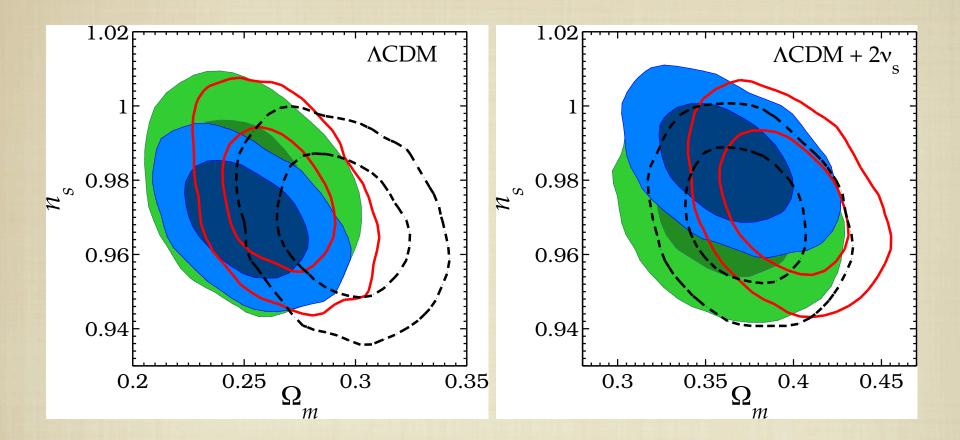
		ACDM	ACDM	ACDM			-m
			$+2\nu_s$	$+\mathrm{SNe}_{\mathrm{Union2}}$	$+2\nu_s+SNe_{Union2}$	+SNe _{SDSS}	
$\chi^2_{ m eff}$	CMB	7512.4	7517.2	7511.7	7517.9	7513.2	7516.7
	P(k)	23.9	28.9	24.5	30.2	23.2	28.7
	H_0	1.5	2.9	1.2	1.5	4.6	3.5
	SNe			530.8	536.0	245.9	237.9
	FG	0.1	0.6	0.4	0.7	0.1	0.7
	Total	7537.9	7549.5	8068.5	8086.2	7787.0	7787.4
DIC	Total	7554.1	7566.1	8085.2	8103.0	7803.4	7804.1
$\Delta \chi^2_{ m eff}$	Total		11.6		17.7	_	0.4
ΔDIC	Total		12.0		17.8		0.7


DIC = $\chi^2_{\text{eff}}(\hat{\theta}) + 2C_b$ $C_b = \overline{\chi^2_{\text{eff}}(\theta)} - \chi^2_{\text{eff}}(\hat{\theta})$ If $\Delta C_b = 0$, then $\Delta \text{DIC} = \Delta \chi^2_{\text{eff}}$.

CMB: SPT FOR SMALL SCALES P(K): CUTOFF AT 0.1 h/Mpc (+5 in $\Delta\chi^2$ if out to 0.2 h/Mpc)

JOUDAKI ET AL 2012 (IN PREP)

INCREASED MATTER DENSITY


WMAP7+SPT+P(K)+HST+SNE

FILLED: UNION2 UNFILLED: SDSS

JOUDAKI ET AL 2012 (IN PREP)

CONSISTENCY OF DATA SETS

GREEN: WMAP BLUE: WMAP+SPT RED: WMAP+P(K) BLACK: WMAP+SNE (SDSS)

> JOUDAKI ET AL 2012 (IN PREP)

EXTENDED PARAMETER SPACES

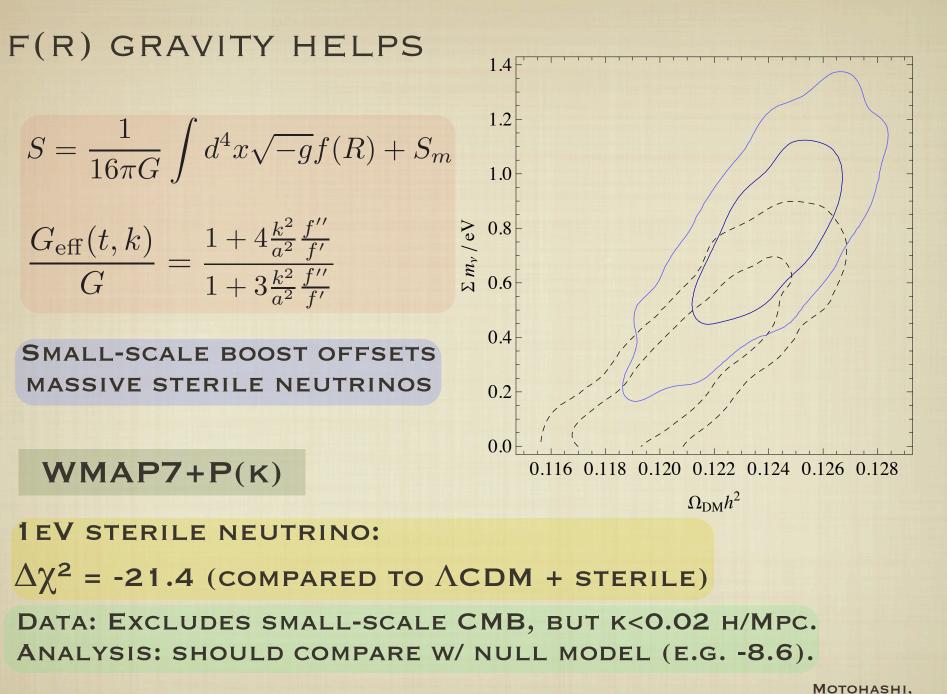
DIFFERENT RESULTS DEPENDING ON CHOICE OF SN LIGHT CURVE FITTER. EXCLUDING SNE, TO WHAT EXTENT CAN $\Delta\chi^2 = 11.6$ decrease via parameter extension?

SEPARATELY:

W AND CURVATURE ~ 2 N_{EFF}, Y_P, RUNNING ~ 1 20 EXTRA MASSLESS

JOINTLY: 8.6 --> $\Delta \chi^2$ = 3.0, but Δ DIC = 11.5

UNION2: $\Delta \chi^2 = 6.4$ (FROM 17.7), $\Delta DIC = 11.5$ (FROM 17.8)


SDSS-SALT2: $\Delta \chi^2 = 7.4$ (from 20.1), Δ DIC = 13.8 (from 19.4)

EXPANDED TO EXPANDED (NO SNE): $\Delta \chi^2 = 7.2$, $\Delta DIC = 8.0$

EXCLUDE HST. REPLACE P(K) WITH BAO.

KOPP PRIOR: $\sum m_{\nu}^{\text{active}} < 0.19 \text{ eV}$ (from 0.34 eV)

JOUDAKI ET AL 2012 (IN PREP)

Motohashi, starobinsky, yokoyama (2012)

SUMMARY

- GIVEN WMAP7+SPT+P(k)+HST, 3+2 NEUTRINOS DISFAVORED AT $\Delta\chi^2$ = 12. To reconcile with LAB, NEED NEW PHYSICS?
- No single additional parameter can entirely bring $\Delta\chi^2$ or Δ DIC down to zero. Not even all parameters added jointly. Even more exotic physics required?

However, shifts in $\Delta\chi^2$ of order 20 "easily" already occur in cosmological analyses. For example, based on choice of SN light curve fitter. If SN results converge toward MLCS fitter, then 3+2 perfectly allowed.

IF 3+2 IS TRUE, WOULD HAVE LARGE RAMIFICATIONS FOR OTHER COSMOLOGICAL QUANTITIES, SUCH AS MUCH LARGER MATTER DENSITY (FROM 25% TO 35% OF CRITICAL DENSITY).

Agenda

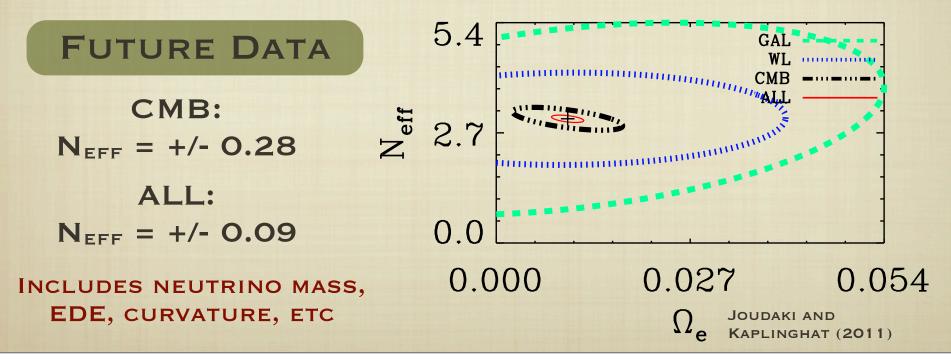
SIGNATURES OF NEUTRINOS

NEUTRINO CONSTRAINTS IN EXTENDED SPACES

MASSIVE STERILE NEUTRINOS

NEUTRINO FORECAST

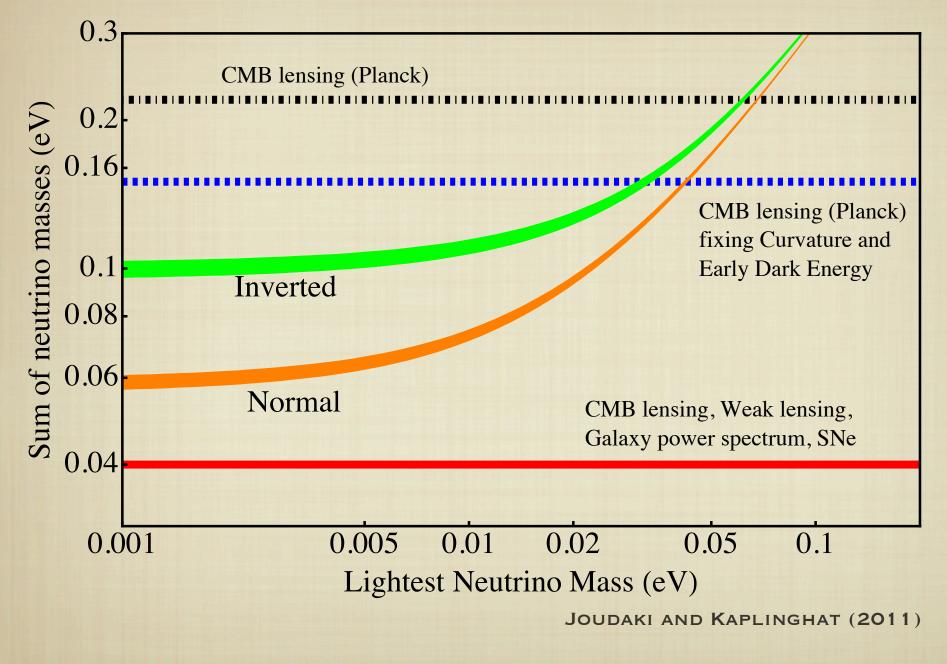
 $\frac{dn_s}{d\ln k}$ $\Omega_{d0} \qquad \Omega_e \qquad \sum m_{\nu}(eV)$ w_0 n_s FORECASTING $10^{10}\Delta_B^2$ $\Omega_c h^2$ $10^3\Omega_b h^2$ $N_{\rm eff}$ au Ω_k **AIM: BREAK DEGENERACIES BY WIDE COMBINATION OF HIGH-Z** AND LOW-Z PROBES. FUNCTIONS OF P(K) AND DISTANCES. FIRST TIME SUCH A COMPREHENSIVE FUTURE DATASET INCLUDING BOTH AUTO AND CROSS CORRELATIONS ANALYZED. TOUGH, BUT KIND OF COSMOLOGICAL DATA WE WILL HAVE. 2000 $C_{\ell}^{\{\kappa\}T}$ $C_{\ell}^{\{\kappa\}\kappa_c}$ $\gamma\{\kappa\}\{\kappa\}$ $\mathsf{r}\{\mathcal{K}\}$ x 13 $C_{\ell}^{\kappa_c \{\kappa\}}$ $C_{\ell}^{\kappa_c T}$ $C^{\kappa_c\{g\}}$ X 13 $C_{\ell}^{\kappa_c\kappa_c}$ $C_{\ell}^{T\{\kappa\}}$ C_{ℓ}^{TE} $C^{T\{g\}}$ $C_{\rho}^{T\kappa_c}$ C_{ℓ}^{TT} $\mathbf{C}_{\ell} =$ C_{ℓ}^{ET} C^{EE}_{ℓ} $C{g}T$ $C_{c}^{\{g\}\kappa_{c}}$ JOUDAKI AND PLANCK+LSST KAPLINGHAT (2011)

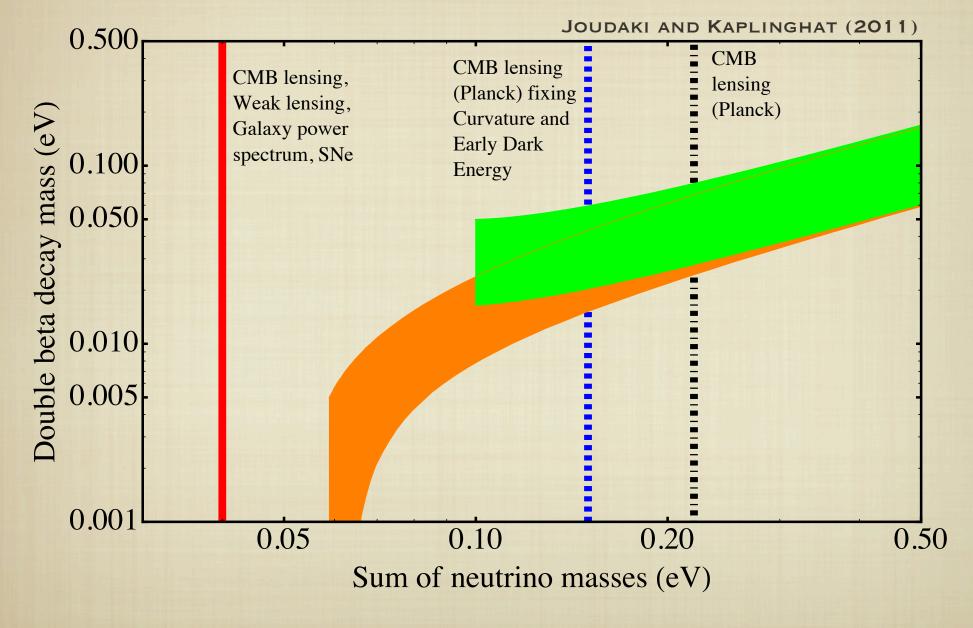

HOW MANY NEUTRINOS?

PRESENT DATA

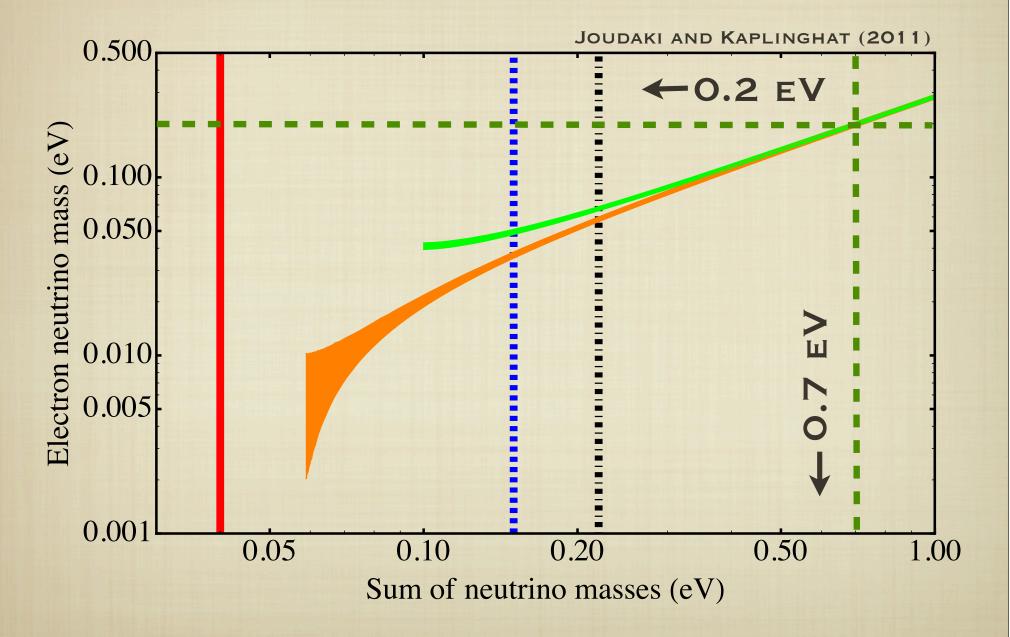
WMAP7+SPT+BAO+HST: N_{EFF} = 3.8 +/- 0.4 Keisler et al (2011)

HOWEVER, WE KNOW NEUTRINOS HAVE MASS. MOREOVER, INCLUDING CONSTANT W, RUNNING, CURVATURE:


WMAP7+SPT+BAO+HST+SNE: N_{EFF} = 3.6 +/- 0.6 JOUDAKI 2012


JOINT ANALYSIS: MASSIVE NEUTRINOS

- DOMINANT CONSTRAINT FROM CMB LENSING: 0.2 EV FROM PLANCK
- CONSTRAINT IMPROVES BY FACTOR 5 IN JOINT ANALYSIS WITH PLANCK. THE JOINT CONSTRAINTS IMPROVE BY FACTOR <2 WHEN EDE IS NOT ALLOWED TO VARY.
- THESE CONSTRAINTS UNAFFECTED BY OUR IGNORANCE OF CURVATURE, WHICH CAN BE CONSTRAINED TO 6 X 10⁻³ BY CMB T +LENSING ALONE, AND IMPROVED BY ORDER OF MAGNITUDE IN THE JOINT ANALYSIS.
- THROWING OUT NONLINEAR SCALES (*l*>1000) MAY NOT RESULT IN SIGNIFICANT DEGRADATION. INCLUDING CROSS-CORRS IMPROVES DE DENSITY AND SUM OF NEUTRINO MASSES BY FACTOR OF 2.
- EVEN MODEST 1% EDE, IF NOT ACCOUNTED FOR, MAY SHIFT ESTIMATES OF NEUTRINO MASS BY 20% AND NUMBER BY 40%.


NEUTRINO MASS FORECASTS

COMPLEMENTARITY WITH DOUBLE BETA DECAY EXPERIMENTS

COMPLEMENTARITY WITH BETA DECAY EXPERIMENTS

SUMMARY

- COMPREHENSIVE FUTURE DATASETS (PLANCK+LSST) INCLUDING BOTH AUTO AND CROSS CORRELATIONS ANALYZED FOR EXTENSIVE PARAMETER SPACE.
- EFFECTIVE NUMBER OF NEUTRINOS CONSTRAINED TO 0.3 LEVEL WITH PLANCK, AND 0.1 LEVEL WHEN COMBINED WITH WL+GALAXY SURVEY. INCLUDES EXTENDED PARAMETERS.
- NOT ACCOUNTING FOR DE AT HIGH REDSHIFT MAY BIAS FUTURE ESTIMATES OF $\sum M_{\nu}$ BY 20% and N_{eff} BY 40%.
- COSMOLOGY CAN PROBE SUM OF NEUTRINO MASSES DOWN TO AN EXQUISITE O.O4 EV EVEN WHEN ALLOWING FOR NON-FLAT GEOMETRY AND UNKNOWN HIGH REDSHIFT UNIVERSE.
- COMPLEMENTARITY WITH LABORATORY EXPERIMENTS WILL BE VERY INTERESTING.

THANKS FOR LISTENING.