The 4th neutrino: CMB+LSS overview

Yvonne Y. Y. Wong RWTH Aachen

The 4th neutrino workshop, Chicago May 18 – 19, 2012

Precision cosmological probes...

Velocity

Hubble Diagram for Cepheids

Distance \longrightarrow

Large-scale matter distribution

 $H_0 = 100 h \text{ km/s/Mpc}$ = 73.8±2.4 km/s/Mpc

The concordance flat ΛCDM model...

• The simplest model consistent with present observations.

Plus flat spatial geometry+initial conditions from single-field inflation

Neutrino energy density (standard picture)...

• Neutrino decoupling at T ~ O(1) MeV. - Fixed by weak interactions

Extending the "neutrino" sector...

 Any particle species whose production is associated with some thermal process and that decoupled while relativistic at relatively late times [T< O(100) MeV] will behave (more or less) like a neutrino as far as cosmological observations are concerned.

- Evidence of N_{eff} >3 from CMB and large-scale structure observations.
- Connection to the **short baseline sterile neutrino**.

1. CMB+large-scale structure...

Evidence for N_{eff} > 3 from CMB+LSS...

Recent CMB+LSS data appear to prefer N_{eff} > 3!

W-5=WMAP-5; W-7=WMAP-7

		Model	Data	$N_{ m eff}$
		$N_{ m eff}$	W-5+BAO+SN+ H_0	$4.13^{+0.87(+1.76)}_{-0.85(-1.63)}$
			W-5+LRG+ H_0	$4.16^{+0.76(+1.60)}_{-0.77(-1.43)}$
•	N _{eff} >3 trend has been		W-5+CMB+BAO+XLF+ f_{gas} + H_0	$3.4^{+0.6}_{-0.5}$
	there since WMAP-5		W-5+LRG+maxBCG+ H_0	$3.77^{+0.67(+1.37)}_{-0.67(-1.24)}$
			W-7+BAO+ H_0	$4.34^{+0.86}_{-0.88}$
			W-7+LRG+ H_0	$4.25\substack{+0.76 \\ -0.80}$
• E> or mo cc	Exact numbers depend	>95% C.L.	W-7+ACT	5.3 ± 1.3
			\rightarrow W-7+ACT+BAO+ H_0	4.56 ± 0.75
	on the cosmological model, and the combination of data.		W-7+SPT	3.85 ± 0.62
			\rightarrow W-7+SPT+BAO+ H_0	3.85 ± 0.42
			\rightarrow W-7+ACT+SPT+LRG+ H_0	$4.08^{(+0.71)}_{(-0.68)}$
			\rightarrow W-7+ACT+SPT+BAO+ H_0	3.89 ± 0.41
			W-7+CL+SPT+BAO+ H_0	(< 3.74)
•	Many model+data	$N_{ m eff}{+}f_{ u}$	W-7+CMB+BAO+ H_0	$4.47^{(+1.82)}_{(-1.74)}$
			\rightarrow W-7+CMB+LRG+ H_0	$4.87^{(+1.86)}_{(-1.75)}$
	combinations find N _{eff} >3	$N_{\mathrm{eff}} + \Omega_k$	W-7+BAO+ H_0	4.61 ± 0.96
	at 95% – 99% C I		\rightarrow W-7+ACT+SPT+BAO+ H_0	4.03 ± 0.45
	at 56 / 55 / 51 C.E.	$N_{ m eff}{+}\Omega_k{+}f_ u$	\rightarrow W-7+ACT+SPT+BAO+ H_0	4.00 ± 0.43
		$N_{ m eff}{+}f_{ u}{+}w$	W-7+CMB+BAO+ H_0	$3.68^{(+1.90)}_{(-1.84)}$
•	Central value N " ~ 4.		W-7+CMB+LRG+ H_0	$4.87^{(+2.02)}_{(-2.02)}$
	еп	$N_{\mathrm{eff}} + \Omega_k + f_ u + v$	$v \rightarrow W-7+CMB+BAO+SN+H_0$	$4.2^{+1.10(+2.00)}_{-0.61(-1.14)}$
			\rightarrow W-7+CMB+LRG+SN+ H_0	$4.3^{+1.40(+2.30)}_{-0.54(-1.09)}$

Abazajian et al., "Light sterile neutrinos: a white paper", 2012

W-5=WMAP-5; W-7=WMAP-7

	Model	Data	$N_{\rm eff}$
	$N_{ m eff}$	W-5+BAO+SN+ H_0	$4.13^{+0.87(+1.76)}_{-0.85(-1.63)}$
		W-5+LRG+ H_0	$4.16^{+0.76(+1.60)}_{-0.77(-1.43)}$
 One exception: cluster 	-	\rightarrow W-5+CMB+BAO+XLF+ f_{gas} + H_0	$3.4^{+0.6}_{-0.5}$
abundance from ROSAT		W-5+LRG+maxBCG+ H_0	$3.77_{-0.67(-1.24)}^{+0.67(+1.37)}$
		W-7+BAO+ H_0	$4.34_{-0.88}^{+0.86}$
	→ = uses	W-7+LRG+ H_0	$4.25\substack{+0.76 \\ -0.80}$
X-ray observalory	cluster data	W-7+ACT	5.3 ± 1.3
prefers a more		W-7+ACT+BAO+ H_0	4.56 ± 0.75
"standard" value of N		W-7+SPT	3.85 ± 0.62
Standard Value Or N _{eff} .		W-7+SPT+BAO+ H_0	3.85 ± 0.42
		W-7+ACT+SPT+LRG+ H_0	$4.08^{(+0.71)}_{(-0.68)}$
		W-7+ACT+SPT+BAO+ H_0	3.89 ± 0.41
$N_{\rm eff} < 3.74 \ (95 \% { m C.L.})$		\rightarrow W-7+CL+SPT+BAO+ H_0	(< 3.74)
	$N_{ m eff}{+}f_{ u}$	W-7+CMB+BAO+ H_0	$4.47^{(+1.82)}_{(-1.74)}$
		W-7+CMB+LRG+ H_0	$4.87^{(+1.86)}_{(-1.75)}$
WMAP-7+Clusters+SPT+BA0+H	$N_{\mathrm{eff}} + \Omega_k$	W-7+BAO+ H_0	4.61 ± 0.96
(N) restricted to > 2)		W-7+ACT+SPT+BAO+ H_0	4.03 ± 0.45
$(N_{eff}) = (10 \times 3)$	$N_{ m eff}{+}\Omega_k{+}f_ u$	W-7+ACT+SPT+BAO+ H_0	4.00 ± 0.43
Burenin & Vikhlinin 2012	$N_{ m eff}{+}f_{ u}{+}w$	W-7+CMB+BAO+ H_0	$3.68^{(+1.90)}_{(-1.84)}$
		W-7+CMB+LRG+ H_0	$4.87^{(+2.02)}_{(-2.02)}$
	$N_{ m eff}{+}\Omega_k{+}f_{ u}{+}w$	W-7+CMB+BAO+SN+ H_0	$4.2^{+1.10(+2.00)}_{-0.61(-1.14)}$
		W-7+CMB+LRG+SN+ H_0	$4.3^{+1.40(+2.30)}_{-0.54(-1.09)}$

Abazajian et al., "Light sterile neutrinos: a white paper", 2012

How does it work...

• Plenty of parameter degeneracies!

What the CMB really probes: equality redshift...

 Ratio of 3rd and 1st peaks sensitive to the redshift of matter-radiation equality via the early ISW effect. Exact degeneracy between the physical matter density ω_m and N_{eff} .

What the CMB really probes: sound horizon...

What the CMB really probes: anisotropic stress...

- Apparent (i.e., not physical) partial degeneracies with primordial fluctuation amplitude A_s and spectral index n_s.
- However, free-streaming particles have anisotropic stress.
- First real signature of N_{eff} in the 3rd peak!

 Measurement of the third peak (since WMAP-5) gives lower limit on N_{eff} from WMAP alone (without supplementary large-scale structure data).

Komatsu et al. [WMAP5] 2008

- Upper limit requires combination of WMAP with other observations to break the remaining $N_{eff} \omega_m$ h parameter degeneracies.
 - Pinning down either ω_m or h will do!

from local (z<0.1) expansion rate measurements

Breaking degeneracies with large-scale structure...

• The shape of the matter power spectrum is additionally sensitive to the baryon fraction:

$$f_b \equiv \frac{\omega_b}{\omega_m} \checkmark \frac{\text{Fixed}}{\text{by CMB}}$$

- The larger N_{eff} , the smaller $f_{b} \rightarrow$ more power at large k.
- (Can partially offset this effect with massive neutrinos.)

Breaking degeneracies with the CMB damping tail...

•

- ACT data available since 2010;
 SPT since 2011; also measured by Planck.
 - Probe photon diffusion scale: $\theta_d = \frac{r_d}{D_A}$ Diffusion scale at decoupling
- Combined with sound horizon measurement:

Breaking degeneracies with the CMB damping tail...

- The $N_{eff} Y_{p}$ degeneracy!
- With ω_b fixed by WMAP, the Helium fraction Y_p determines the free electron density → affects
 photon diffusion length.
- Current strategy:
 - Either fix Y_p at 0.24 \rightarrow 0.25.
 - Or apply a BBN consistency relation.
- Not an exact degeneracy; can be resolved by Planck.

A quick recap on N_{eff} ...

 The WMAP measurement of the acoustic peaks alone does not completely constrain N_{eff} because of parameter degeneracies:

$$\begin{array}{ll} &- & N_{eff} - \omega_{m} \\ &- & N_{eff} - h \ (via \ \omega_{m} - h \ and \ N_{eff} - \omega_{m}) \\ &- & N_{eff} - Y_{p} \end{array}$$

• Degeneracies can be broken with measurements of

- CMB damping tail
$$\longrightarrow \omega_m$$
 (Y p with Planck)
- Large-scale structure distribution $\longrightarrow \omega_m$

► h

- Local Hubble expansion rate
- Preference for N_{eff} >3 appears to be robust against model assumptions.

2. Connection to the short baseline sterile neutrino...

Experimental anomalies & the sterile v interpretation...

- Experiments at odds with the standard **3-neutrino interpretation** of global neutrino oscillation data:
 - LSND (\bar{v}_e appearance)
 - MiniBooNE anti-neutrinos (\overline{v}_e appearance)
 - Short baseline reactor experiments (re-evaluation of neutrino fluxes) (\bar{v}_e disappearance)

• If interpreted as oscillation signals \rightarrow a 4th (or more) sterile neutrino with $\Delta m^2 \sim O(1 \text{ eV}^2)$ and $\sin^2 2\theta > 10^{-3}$.

Light sterile neutrinos and N_{eff} ...

- SBL-preferred Δm^2 and mixing favour the production and thermalisation of sterile neutrinos in the early universe via $v_{\alpha} \leftrightarrow v_{s}$ oscillations + v_{α} scattering.
 - → Can easily produce an excess relativistic energy density of ΔN_{eff} ~ 1.
 - → Sterile states have the same temperature as the SM neutrinos.

Light sterile neutrinos and N_{eff}...

- SBL-preferred Δm^2 and mixing favour the production and thermalisation of sterile neutrinos in the early universe via $v_{\alpha} \leftrightarrow v_{s}$ oscillations + v_{α} scattering.
 - → Can easily produce an excess relativistic energy density of ΔN_{eff} ~ 1.
 - → Sterile states have the same temperature as the SM neutrinos.

Hannestad, Tamborra & Tram 2012

Can the short baseline sterile neutrino explain N_{eff} > 3?

- Short answer: Not so easy.
- Reason: eV mass neutrinos violate CMB+LSS hot dark matter bounds.

$$m_s < 0.48 \text{ eV} (95\% C.I.)$$

Lab best-fit:
$$m_s \sim 1 \text{ eV}$$

• 3+2 thermalised sterile:

$$m_{sl} + m_{s2} < 0.9$$
 eV (95% C.I.)

Lab best-fit: $m_{sl} \sim 0.7 \text{ eV}$, $m_{s2} \sim 0.9 \text{ eV}$

Is there a way out? Plan A...

 Suppress sterile neutrino thermalisation using, e.g., a large lepton asymmetry (L >> B ~ 10⁻¹⁰).

Foot & Volkas 1995

- Generating a large lepton asymmetry requires new physics.
- If complete suppression, then N_{eff} > 3 must be explained by some other physics (subeV thermal axions, hidden photons, etc.?)

Hannestad, Tamborra & Tram 2012

Grin, Smith, and Kamionkowski, Axion constrains in non-standard thermal histories, arXiv:0711.1352 [astro-ph]; Kawasaki, Nakayama ,and Senami, Cosmological implications of supersymmetric axion models, arXiv:0711.3083 [hep-ph]; Feng, Tu and Yu, Thermal Relics in Hidden Sectors, arXiv:0808.2318 [hep-ph]; Nelson and Walsh, Chameleon vector bosons, arXiv:0802.0762 [hep-ph]; Ackermann, Buckley, Carroll, and Kamionkowski, Dark Matter and Dark Radiation, arXiv:0810.5126 [hep-ph]; Mahato, Torsion, Dirac Field, Dark Matter and Dark Radiation, gr-qc/0603134; Jäckel, Redondo, and Ringwald, Signatures of a hidden cosmic microwave background, arXiv:0804.4157 [astro-ph]; Hasenkamp, Dark radiation from the axino solution of the gravitino problem, arXiv:1107.4319 [hep-ph]; Kobayashi, Takahashi, Takahashi, and Yamaguchi, Dark Radiation from Modulated Reheating, arXiv:1111.1336 [astro-ph.CO]; Feng, **Rentala and Surujon**, WIMPless Dark Matter from an AMSB Hidden Sector with No New Mass Parameters, arXiv:1111.4479 [hep-ph]; Hooper, Queiroz, and Gnedin, Non-Thermal Dark Matter Mimicking An Additional Neutrino Species In The Early Universe, arXiv:1111.6599 [astro-ph.CO]; Menestrina and Scherrer, Dark Radiation from Particle Decays during Big Bang Nucleosynthesis, arXiv:1111.0605 [astro-ph.CO]; Aslanbeigi, **Robbers, Foster, Kohri, and Afshordi**, Phenomenology of Gravitational Aether as a solution to the Old Cosmological Constant Problem, arXiv:1106.3955 [astro-ph.CO]; Chen and Lin, Cosmon as the Modulon: Non-Gaussianity from Dark Enegry, arXiv:1104.0982 [hep-ph]; Das and Weiner, Late Forming Dark Matter in Theories of Neutrino Dark Energy, astro-ph/0611353; Nakayama, Takahashi, and Yanagida, A theory of extra radiation in the Universe, arXiv:1010.5693 [hep-ph;] **Fischler and Meyers**, Dark Radiation Emerging After Big Bang Nucleosynthesis?, arXiv:1011.3501 [astro-ph.CO]; Dreiner, Hanussek, Kim, and Sarkar, Gravitino cosmology with a very light neutralino, arXiv:1111.5715 [hep-ph]; Foot, Mirror dark matter cosmology - predictions for Neff[CMB] and Neff[BBN], arXiv:1111.6366 [astro-ph.CO]; Jeong and Takahashi, Light Higgsino from Axion Dark Radiation, arXiv:1201.4816 [hep-ph]; Kaplan, Krnjaic, Rehermann, and Wells, Dark Atoms: Asymmetry and Direct Detection, arXiv:1105.2073 [hep-ph]; Cicoli, Large extra dimensions and light hidden photons from anisotropic string vacua, arXiv:1111.0790 [hep-th];

Is there a way out? Plan B...

- Failing to suppress v_s thermalisation, exploit parameter degeneracies in the CMB+LSS to engineer a good fit.
- No room for play within the Λ CDM model, but extensions of Λ CDM can help to relax the hot dark matter constraint on m_s:
 - Non-standard dark energy equation of state.
 - Modified gravity.
 - Non-flat spatial geometry.
 - Even more massless degrees of freedom.

- ...

Elgarøy & Kristiansen 2011; Hamann, Hannestad, Raffelt & Y³W 2011 Giusarma et al. 2012; Motohashi, Starobinsky & Yokoyama 2012

Is there a way out? Plan B...

- Failing to suppress v_s thermalisation, exploit parameter degeneracies in the CMB+LSS to engineer a good fit.
- No room for play within the Λ CDM model, but extensions of Λ CDM can help to relax the hot dark matter constraint on m_s:
 - Non-standard dark energy equation of state.
 - Modified gravity.
 - Non-flat spatial geometry.
 - Even more massless degrees of freedom.

1 x 1 eV sterile neutrino can be reasonably accommodated.

1 x 2eV or 2 x 1 eV is still problematic...

Elgarøy & Kristiansen 2011; Hamann, Hannestad, Raffelt & Y³W 2011 Giusarma et al. 2012; Motohashi, Starobinsky & Yokoyama 2012

Is there a way out? Plan B...

Modified gravity scenario to explain accelerated expansion in lieu of dark energy /

• An example: accommodating 1eV sterile neutrinos with f(R) gravity:

FIG. 1: 1 and 2σ contours of the sterile neutrino mass (left) and σ_8 (right) for the cases with three massless and one massive neutrinos in the Λ CDM model (dashed black) and f(R)gravity (solid blue). $\chi^2_{\text{eff}} = 3774.1$ and 3767.0, respectively.

Necessary side effects...

• Exploiting parameter degeneracies also implies that other (unrelated) cosmological parameter values will change.

Hamann, Hannestad, Raffelt & Y³W 2011

Planck and N_{eff} ...

 If N_{eff} is as large as 4, it will be settled almost immediately by Planck (launched May 14, 2009; public data release early 2013).

68% sensitivities

Experiment	$f_{ m sky}$	θ_b	$w_T^{-1/2}$	$w_P^{-1/2}$	$\Delta N_{ u}$	$\Delta N_{ u}$	ΔN_{ν} (free Y)
			$[\mu K']$	[µ K']	\mathbf{TT}	TT+TE+EE	TT+TE+EE
Planck	0.8	7'	40	56	0.6	0.20	0.24
ACT	0.01	1.7'	3	4	1	0.47	0.9
ACT + Planck					0.4	0.18	0.24
CMBPOL	0.8	4'	1	1.4	0.12	0.05	0.09

Bashinsky & Seljak 2004

Helium fraction as a free parameter

Planck and neutrino mass...

Summary...

- Current precision cosmological data show a preference for extra relativistic degrees of freedom (beyond 3 neutrinos).
- Sterile neutrino interpretation of short baseline neutrino anomalies does not quite fit into the simplest picture though...
 - 3+2: **Too many** for BBN
 - 3+1, 3+2: **Too heavy** for CMB/LSS
- Non-trivial extensions to ΛCDM can reasonably accommodate 1 x 1 eV fully thermalised sterile neutrino species.
- **Planck with tell** (at least part of the story).